South American Research Journal, 4(2), 25-44
https://sa-rj.net/index.php/sarj/article/view/61
ISSN 2806-5638
series de tiempo y sus aplicaciones. Editorial Académica
Ghysels, E., Harvey, A. C., & Renault, E. (1996). Stochastic
volatility. En C. R. Rao & G. S. Maddala (Eds.), Statisti-
cal methods in finance (pp. 119-191). North-Holland.
Española.
Abril, J. C., & Abril, M. de las M. (2024). Modelado y esti-
mación de la volatilidad estocástica: Aplicación a la in-
flación. South American Research Journal, 4(1), 35-51.
Baillie, R. T., & Bollerslev, T. (1989). The message in daily ex-
change rates: A conditional-variance tale. Journal of Busi-
ness and Economic Statistics, 7(3), 297-305.
Goldfarb, D. (1970). A family of variable metric updates de-
rived by variational means. Mathematics of Computation,
24(109), 23-26.
Harvey, A. C. (1989). Forecasting, structural time series models
and the Kalman filter. Cambridge University Press.
Harvey, A. C., Ruiz, E., & Shephard, N. (1994). Multivariate
Bollerslev, T. (1986). Generalized autoregressive conditional
stochastic variance models. Review of Economic Studies,
heteroskedasticity. Journal of Econometrics, 31(3), 307-
61(2), 247-264.
3
27.
Hsieh, D. A. (1989). Modeling heteroskedasticity in daily for-
eign exchange rates. Journal of Business and Economic
Statistics, 7(3), 307-317.
Kim, S., Shephard, N., & Chib, S. (1998). Stochastic volatility:
Likelihood inference and comparison with ARCH models.
Review of Economic Studies, 65(2), 361-393.
Bollerslev, T. (1987). A conditionally heteroskedastic time series
model for speculative prices and rates of return. Review of
Economics and Statistics, 69(3), 542-547.
Bollerslev, T., Chou, R. Y., & Kroner, K. F. (1992). ARCH mod-
eling in finance: A review of the theory and empirical evi-
dence. Journal of Econometrics, 52(1-2), 5-59.
Koopman, S. J., Harvey, A. C., Doornik, J. A., & Shephard, N.
Bollerslev, T., & Wooldridge, J. M. (1992). Quasi-maximum
likelihood estimation and inference in dynamic models with
time-varying covariances. Econometric Reviews, 11(2),
(
2010). STAMP 8.3: Structural time series analyser, mod-
eller and predictor. Timberlake Consultants.
Laurent, S. (2013). Estimating and forecasting ARCH models us-
ing G@RCH 7. Timberlake Consultants.
Motta, A. C. O. (2001). Modelos do espaço de estados não-
Gaussianos e o modelo de volatilidade estocástica (Tesis
de maestría). IMECC-UNICAMP.
Pagan, A. (1996). The econometrics of financial markets. Jour-
nal of Empirical Finance, 3(1), 15-102.
Sandmann, G., & Koopman, S. J. (1998). Estimation of stochas-
tic volatility models via Monte Carlo maximum likelihood.
Journal of Econometrics, 87(2), 271-301.
1
43-172.
Box, G. E. P., & Jenkins, G. M. (1976). Time series analysis:
Forecasting and control (Revised ed.). Holden-Day.
Broyden, C. G. (1970). The convergence of a class of double-
rank minimization algorithms. Journal of the Institute of
Mathematics and its Applications, 6(1), 76-90.
Bryan, M. F., & Cecchetti, S. G. (1994). Measuring core infla-
tion. En N. G. Mankiw (Ed.), Monetary policy (pp. 195-
2
19). University of Chicago Press.
Bryan, M. F., Cecchetti, S. G., & Wiggins II, R. L. (1997). Ef-
ficient inflation estimation (Working Paper No. 6183). Na-
tional Bureau of Economic Research.
Durbin, J., & Koopman, S. J. (1997a). Monte Carlo maximum
likelihood estimation for non-Gaussian state space models.
Biometrika, 84(3), 669-684.
Durbin, J., & Koopman, S. J. (1997b). Time series analysis of
non-Gaussian observations based on state space models.
Preprint, London School of Economics.
Durbin, J., & Koopman, S. J. (2000). Time series analysis of non-
Gaussian observations based on state space models from
both classical and Bayesian perspectives (with discussion).
Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 62(1), 3-56.
Shephard, N. (2005). Stochastic volatility: Selected readings.
Oxford University Press.
Shephard, N., & Pitt, M. K. (1997). Likelihood analysis of non-
Gaussian measurement time series. Biometrika, 84(3), 653-
667.
Stock, J. H., & Watson, M. W. (2015). Core inflation and trend
inflation (Working Paper No. 21282). National Bureau of
Economic Research.
Taylor, S. J. (1980). Conjectured models for trend in financial
prices tests as forecasts. Journal of the Royal Statistical So-
ciety: Series B (Methodological), 42(3), 338-362.
Taylor, S. J. (1986). Modelling financial time series. John Wiley.
Taylor, S. J. (1994). Modelling stochastic volatility. Mathemati-
cal Finance, 4(2), 183-204.
Durbin, J., & Koopman, S. J. (2001). Time series analysis by
state space methods. Oxford University Press.
Durbin, J., & Koopman, S. J. (2012). Time series analysis by
state space methods (2nd ed.). Oxford University Press.
Weiss, A. A. (1986). Asymptotic theory for ARCH models: Es-
timation and testing. Econometric Theory, 2(1), 107-131.
Engle, R. F. (1982). Autoregressive conditional heteroskedastic-
ity with estimates of the variance of United Kingdom infla-
tion. Econometrica, 50(4), 987-1007.
Engle, R. F., & Gonzalez-Rivera, G. (1991). Semiparametric
ARCH models. Journal of Business and Economic Statis-
tics, 9(4), 345-360.
Engle, R., & Mezrich, J. (1996). GARCH for groups. Risk, 9(8),
3
6-40.
Fletcher, R. (1970). A new approach to variable metric algo-
rithms. Computer Journal, 13(3), 317-322.
Fletcher, R. (1987). Practical methods of optimization (2nd ed.).
John Wiley & Sons.
https://doi.org/10.5281/zenodo.14845739
44