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ABSTRACT
Economic time series often exhibit volatility, where the variance
of the observational error fluctuates over time. One of the most
widely used methodologies for modeling these dynamics is the
ARCH model, introduced by Engle (1982), and its extensions,
such as GARCH models. These assume that conditional vari-
ance depends on past values of the series. In contrast, stochastic
volatility models (SVM), first proposed by Taylor (1980, 1986),
assume that volatility depends on past variances but not directly
on past returns. This study compares both approaches in mod-
eling the volatility of a small stock market. To evaluate the
performance of ARCH-GARCH and stochastic volatility mod-
els in estimating market risk and identifying volatility patterns
in the Merval index, which represents the Buenos Aires Stock
Exchange (BASE). A longitudinal observational study was con-
ducted using daily Merval index data from January 13, 2003, to
May 22, 2015, covering 3006 observations. This period was cho-
sen to avoid political shifts that could introduce market distor-
tions. Statistical tests (ADF, Phillips-Perron) were performed to
check stationarity, and models were estimated using maximum
likelihood and Kalman filtering. GARCH models with heavy-
tailed distributions provided better short-term volatility predic-
tions, capturing volatility clustering, while stochastic volatility
models were more effective at identifying regime shifts. The
Merval index, with an average market capitalization of $312
million, confirms the characteristics of a small stock market,
where volatility models play a crucial role in risk assessment.
The choice between ARCH-GARCH and stochastic models de-
pends on the forecasting horizon. GARCH models are optimal
for short-term risk evaluation, whereas stochastic models are bet-
ter suited for detecting long-term structural changes. Combining

both approaches enhances volatility modeling in low-liquidity
markets.

Keywords: Volatility, ARCH-GARCH models, State space
models, Kalman filter, Stochastic volatility, Merval index.

RESUMEN
Las series temporales económicas suelen presentar volatilidad, lo
que implica que la varianza del error de observación fluctúa con
el tiempo. Una de las metodologías más utilizadas para mod-
elar estas dinámicas es el modelo ARCH, introducido por En-
gle (1982), y sus extensiones, como los modelos GARCH. Estos
suponen que la varianza condicional depende de valores pasados
de la serie. En contraste, los modelos de volatilidad estocás-
tica (SVM), propuestos inicialmente por Taylor (1980, 1986),
asumen que la volatilidad depende de las varianzas pasadas pero
no directamente de los rendimientos previos. Este estudio com-
para ambos enfoques en la modelización de la volatilidad en un
mercado bursátil pequeño. Evaluar el desempeño de los modelos
ARCH-GARCH y de volatilidad estocástica en la estimación del
riesgo de mercado e identificación de patrones de volatilidad en
el Merval index, que representa la Bolsa de Comercio de Buenos
Aires (BASE). Se realizó un estudio longitudinal observacional
basado en datos diarios del Merval index entre el 13 de enero de
2003 y el 22 de mayo de 2015, abarcando 3006 observaciones.
Se seleccionó este período para evitar cambios en la afiliación
política del gobierno, eliminando posibles distorsiones exógenas
del mercado. Se aplicaron pruebas estadísticas (ADF, Phillips-
Perron) para verificar estacionariedad y los modelos fueron es-
timados mediante máxima verosimilitud y filtrado de Kalman.
Los modelos GARCH con distribuciones de colas pesadas predi-
jeron mejor la volatilidad en el corto plazo, capturando el cluster-
ing de volatilidad, mientras que los modelos estocásticos fueron
más eficaces en la detección de cambios de régimen. El Merval
index, con una capitalización promedio de $312 millones, con-
firma las características de un mercado bursátil pequeño, donde
la modelización de la volatilidad es clave para la evaluación del
riesgo. La elección entre modelos ARCH-GARCH y estocásti-
cos depende del horizonte de pronóstico. Los modelos GARCH
son óptimos para evaluar el riesgo en el corto plazo, mientras
que los modelos estocásticos son más adecuados para detectar
cambios estructurales a largo plazo. La combinación de ambos
enfoques mejora la modelización de la volatilidad en mercados
de baja liquidez.

Palabras claves: Volatility, ARCH-GARCH models, State
space models, Kalman filter, Stochastic volatility, Merval index.˙

1 INTRODUCTION
The study of the phenomenon of volatility has been developed

mainly from the analysis of time series related to the economy.
However, it must be emphasized that any time series may be sub-
ject to the presence of volatility.

Many economic time series do not have a constant mean and
in practical situations we often see that the variance of the ob-
servational error, conditional on past knowledge, is subject to
substantial variability over time. This phenomenon is known as
volatility.
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To take into account the presence of volatility in an economic
series it is necessary to resort to models known as conditional
heteroscedastic models. In these models, the variance of a series
at a given moment of time depends on past information and other
data available up to that time, so a conditional variance must be
defined, which is not constant and does not coincide with the
overall variance of the observed series.

An important characteristic of financial time series is that they
are not generally serially correlated, but rather dependent. Thus,
linear models such as those belonging to the ARMA model fam-
ily may not be appropriate to describe these series.

There is a very large variety of non-linear models in the litera-
ture, useful for the analysis of economic time series with volatil-
ity. An important class of them are the ARCH-type models in-
troduced by Engle (1982) and its extensions. These models are
non-linear with respect to variance.

The ARCH or GARCH family of models assume that the con-
ditional variance (volatility) depends on past observations. In
other words, if σ2

t is the volatility, the ARCH-GARCH family
assumes that it depends on the series yj for j < t. On the other
hand, the stochastic volatility model or SVM, first proposed by
Taylor (1980, 1986), is not based on this assumption. This model
assumes that the volatility σ2

t depends on its past values (σ2
j for

j < t) but is independent of the past of the series under analysis
(yj for j < t).

A cursory inspection of series such as the one presented in
this paper suggests that they do not have a constant mean and
variance. A stochastic variable in which the variance is con-
stant is said to be homoscedastic as opposed to a heteroscedastic
variable. For those series in which there is volatility, the uncon-
ditional variance may be constant even though the conditional
variance in some periods is unusually large and in others small.

As an application, the Merval index series is analyzed. The
Merval is a stock market index that has been calculated in the
Buenos Aires Stock Exchange (BASE), Argentina, since June
30, 1986. It measures the traded volume of the main shares
listed on that exchange. The index is composed of a fixed nom-
inal amount of shares of different listed companies, commonly
known as “leading companies”. The shares that make up the
Merval index change every three (3) months, when this portfolio
is recalculated, based on the participation in the traded volume
and the number of operations of the last six (6) months. Those
shares that are within the accumulated 80% of market participa-
tion are selected. In addition, the selected companies must meet
the requirement of having traded in at least 80% of the trading
sessions of the period considered.

The Buenos Aires Stock Exchange was founded on July 10,
1854. It is the largest stock exchange and the main business and
financial centre of the Argentine Republic. Its transactions are
basically shares of important national and foreign companies,
bonds, currencies and futures contracts. It is a non-profit civil
association run by representatives of the various business sec-
tors. According to a study carried out by the International Fi-
nance Corporation, which is part of the World Bank, the average
value of the companies listed on the BASE is 312 million dollars,
a figure that places Argentina in 30th place among the countries
that have stock markets. That is why we say that we are dealing

with a small stock market.
As stated, in this paper we analyze the Merval index series.

This is a series with information corresponding to all working
days of the stock market. Specifically, we work with the returns
of the quotes of this index, which consists of the first differences
of the logarithm of the Merval levels. The period analyzed goes
from January 13, 2003 to May 22, 2015. There are 3,006 obser-
vations. It covers a period in which there was no change in the
government’s affiliation. In fact, during that period the wing of
Peronism called Kirchnerism governed. This eliminates the ef-
fects that could have been introduced into the market by changes
in the governing group.

To perform the analysis we used two approaches: one based
on ARCH-GARCH type models, and another based on stochastic
volatility models. We then made comparisons between these two
approaches.

2 ECONOMIC AND FINANCIAL TIME SERIES
MODELLING

The basic idea of a time series is very simple, it consists of
the recording of any fluctuating quantity measured at different
points in time.

Specifically, a time series is a set of observations {y1, ..., yn}
ordered in time. The basic and general model used to represent
any time series is the additive model, given by

yt = µt + γt + εt, t = 1, ..., n, (1)

wehere µt is a component that changes smoothly over time called
trend, γt is a periodic component called seasonality and εt is an
irregular component called error. As we can see, the common
feature of all records belonging to the time series domain is that
they are influenced, at least partially, by sources of random vari-
ation.

The main reason for modelling a time series is to enable pre-
diction of its future values. The distinctive feature of a time se-
ries model, as opposed to, for example, an econometric model, is
that no attempt is made to formulate a behavioural relationship
between the time series under consideration and other explana-
tory variables. Movements of the series are explained solely in
terms of its own past, or by its position relative to time or by its
structure. Predictions are made by extrapolation.

Many economic time series do not have a constant mean and
in many cases there are periods of relative calm followed by pe-
riods of significant changes. Much of the current research in
time series and econometrics is focused on extending the clas-
sical and commonly used methodology of Box and Jenkins to
analyze this type of behaviour. However, there is a characteristic
present in time series that refer to financial assets (or directly fi-
nancial time series) and other series referring to economic activ-
ities and it is what is known as volatility, which can be defined in
various ways, but is not directly observable. To take into account
the presence of volatility groups in a financial or economic se-
ries it is necessary to resort to models known as conditional het-
eroscedastic models. In these models, the variance (or volatility)
of a series at a given time depends on its past and other infor-
mation available up to that time, so a conditional variance must
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be defined, which is not constant and does not coincide with the
global or non-conditional variance of the observed series.

3 THE VOLATILITY

Volatility is defined as the variance of a random variable, con-
ditional on all past information. Since volatility cannot be mea-
sured directly, it can manifest itself in various ways in a time
series.

Let yt be the series under study whose dimension is p = 1.
We define

µt = E(yt |Yt−1 ) = Et−1(yt), (2)

σ2
t = var(yt |Yt−1 ) = E

{
(yt − µt)

2 |Yt−1

}
= Et−1(yt − µt)

2 = vart−1(yt), (3)

as the conditional mean and variance of yt given the information
up to time t− 1 contained in Yt−1, respectively.

A common model to take volatility into account is of the form

yt = µt +
√
htεt, (4)

where Et−1(εt) = 0, var(εt) = 1 and typically the εt are inde-
pendent and identically distributed (iid) with distribution func-
tion F. The unconditional mean and variance of yt will be de-
noted as µ = E(yt) and σ2 = var(yt), respectively, and let G
be the distribution function of yt. It is clear that (2), (3) and F
determine µ, σ2 and G, but not the opposite. More details about
this formulation can be seen in Abril M. (2014).

4 MODELS OF THE ARCH-GARCH FAMILY

There is a very large variety of non-linear models available
in the literature to deal with volatility, but we will concentrate
on the ARCH type models or autoregressive with conditional
heteroscedasticity models, introduced by R. Engle (1982) and its
extensions. These models are non-linear as far as the variance is
concerned.

In the analysis of non-linear models the errors (also called
innovations, because they represent the new part of the series
that cannot be predicted from the past) εt, are generally assumed
to be iid and the model has the form

yt = g(εt−1, εt−2, . . .) + εth(εt−1, εt−2, . . .)

= gt + εtht = µt + εtht, (5)

where g(·) = gt = µt represents the conditional mean and
h2(·) = h2t is the conditional variance. If g(·) is non-linear,
the model is said to be non-linear in the mean, on the other hand
if h(·) is non-linear, the model is said to be non-linear in the
variance. For example, the model

yt = εt + αε2t−1,

is non-linear in the mean since g(·) = αε2t−1 and h(·) = 1, while
the model

yt = εt

√
αy2t−1,

is non-linear in variance since g(·) = 0 and h(·) =
√
αy2t−1 and

yt−1 depends on εt−1.
ARCH models or autoregressive with conditional het-

eroscedasticity models were first introduced by Engle in 1982
to estimate the variance of inflation in Britain. The basic idea of
this model is that the price of an asset yt is not serially correlated
but depends on past prices via a quadratic function.

In conventional econometric models, the variance of the dis-
turbance is assumed to be constant. However, it can be seen that
many economic series exhibit periods of unusually large volatil-
ity followed by periods of relative calm. In these circumstances,
the assumption of constant variance, also called homoscedastic-
ity, is somewhat inappropriate. There are instances when one
wishes to predict the conditional variance of a series. Asset hold-
ers may be interested in predictions of the rates of return and their
variance for a given period. The unconditional variance (i.e. the
long-term variance) would not be important if one plans to buy
the asset at time t and sell it at t+ 1.

An ARCH(q) model can be expressed as

yt = µt + εtht = µt + εtσt, εt ∼ iid D (0, 1) , (6)

σ2
t = h2t = ω +

q∑
i=1

αiz
2
t−1, (7)

where zt = yt − µt and D (·) is a probability density function
with mean equal to zero and unit variance.

An ARCH model adequately describes volatility clustering.
The conditional variance of yt is an increasing function of the
square of the shock occurring at time t−1. Consequently, if yt−1

is large enough in absolute value, σ2
t and thus yt are expected to

be large enough in absolute value as well. It should be noted that
even though the conditional variance in an ARCH-type model
varies over time, i.e., σ2

t = E
(
z2t |Yt−1

)
the unconditional vari-

ance of zt is constant and, since ω > 0 and
∑q

i=1 αi < 1, we
have

σ2 ≡ E
{
E
(
z2t |Yt−1

)}
=

ω

1−
∑q

i=1 αi
. (8)

If εt is normally distributed, thenE
(
ε3t
)
= 0 andE

(
ε4t
)
= 3.

Therefore, E
(
z3t
)
= 0 and the symmetry of the variable z will

be equal to zero. Thus, the kurtosis coefficient for an ARCH(1)
is 3(1 − α2

1)/(1 − 3α2
1) if α1 <

√
1/3 ≈ 0, 577. In this case,

the conditional distribution of any series will have heavy tails if
α1 > 0.

In most practical applications, excessive kurtosis in an ARCH
model means that a normal distribution is not adequate enough
to explain the process generating the data. Therefore, we can
make use of other distributions. For example, we can assume
that εt follows a Student t distribution with mean 0, variance
equal to 1 and υ degrees of freedom, that is, εt is ST (0, 1, υ).
In this case, the unconditional kurtosis for the ARCH(1) is
λ(1 − α2

1)/(1 − λα2
1) where λ = 3 (υ − 2) / (υ − 4). Due to

the additional coefficient υ, the ARCH(1) model based on a t
distribution will have heavier tails than the one based on a nor-
mal distribution, which will be very useful when analyzing the
data in our study. It is important to note that other distributions
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for performing the analysis are available in some software pack-
ages.

The calculation of σ2
t in (7) depends on the past unobserved

quadratic residuals, z2t , for t = 0,−1, . . . ,−q + 1.To initialize
the process, the unobserved quadratic residuals are set to a value
equal to the sample mean of the observed ones.

The conditional mean µt can contain n1explanatory variables,
which are specified as follows

µt = µ+

n1∑
i=1

δi xi,t. (9)

On the other hand, n2 explanatory variables can be included
in the conditional variance given in (7), as follows

ωt = ω +

n2∑
i=1

ωi xi,t. (10)

where the xi,t of (9) are not necessarily the same as those ap-
pearing in (10).
σ2
t must obviously be positive for all t. The sufficient condi-

tions that ensure that the conditional variance is positive in (7)
are given by ω > 0 and αi ⩾ 0 for all i. Furthermore, when
explanatory variables enter the ARCH specification, these pos-
itivity restrictions no longer hold, although we still require that
the conditional variance be non-negative.

A very simple device for reducing the number of parame-
ters to be estimated, which we will not develop in this paper,
is called variance orientation and was first developed by Engle
and Mezrich (1996).

The conditional variance matrix in an ARCH model, and in
most of its generalizations, can be expressed in terms of its un-
conditional variance and other parameters. By this means, it
is possible to reparameterize the model using the unconditional
variance and replace it by a consistent estimator before maximiz-
ing the likelihood.

Applying variance orientation for an ARCH model involves
replacing ω by σ2 (1−

∑q
i=1 αi), where σ2 is the unconditional

variance of yt, which can be consistently estimated by its sample
counterpart.

If explanatory variables appear in the ARCH equation then ω
is replaced by

σ2

(
1−

q∑
i=1

αi

)
−

n2∑
i=1

ωixi,

where xi is the sample average of the variable xi,t, assuming
that there is stationarity in the n2 explanatory variables. In other
words, the explanatory variables are centered.

While Engle (1982) certainly made the major contribution
to financial econometrics, ARCH-type models are rarely used
in practice due to their simplicity. A good generalization of
these models is found in the GARCH-type models introduced
by Bollerslev (1986). These models are also a weighted aver-
age of the past squared residuals, are more parsimonious than
ARCH-type models and even in their simplest form have proven
to be extremely successful in predicting conditional variances.

It should be noted that GARCH-type models are not the only
extension of ARCH-type models and there are at least twelve
specifications related to them that will be the subject of future
research.

The generalized ARCH models (or GARCH models as they
are also known) are based on an infinite ARCH specification and
allow reducing the number of parameters to be estimated by im-
posing non-linear restrictions on them. The GARCH(p, q) model
is expressed as follows

σ2
t = ω +

q∑
i=1

αiz
2
t−i +

p∑
j=1

βjσ
2
t−j . (11)

Using the lag operator L, the GARCH(p, q) model is trans-
formed into

σ2
t = ω + α (L) z2t + β (L)σ2

t ,

where α (L) = α1L + α2L
2 + . . . αqL

q and β (L) = β1L +
β2L

2 + . . . βpL
p.

If all the roots of the polynomial |1− β (L)| = 0 lie outside
the unit circle we have

σ2
t = ω |1− β (L)|−1

+ α (L) |1− β (L)|−1
z2t , (12)

which can be seen as an ARCH(∞) model since the conditional
variance depends linearly on all previous quadratic residuals. In
this case, the conditional variance of yt can be larger than the
unconditional variance given by

σ2 ≡ E
(
z2t
)
=

ω

1−
∑q

i=1 αi −
∑p

j=1 βj
,

if past realizations of z2t are greater than σ2 (Palm, 1996).
Applying the variance orientation procedure to a GARCH

model involves replacing ω by σ2
(
1−

∑q
i=1 αi −

∑p
j=1 βj

)
,

where σ2 is the unconditional variance of z2t which can be con-
sistently estimated by means of its sample counterpart.

On the other hand, if the explanatory variables ap-
pear in a GARCH-type formulation, ω is then replaced by
σ2
(
1−

∑q
i=1 αi −

∑p
j=1 βj

)
−
∑n2

i=1 ωi xi, where xi is the
sample mean of the variable xi,t, assuming stationarity of the n2
explanatory variables.

Bollerslev (1986) showed that for a GARCH(1, 1)
with normal innovations, the kurtosis of y is
3
[
1− (α1 + β1)

2
]/[

1− (α1 + β1)
2 − 2α2

1

]
> 3. The

autocorrelations of z2t were derived by Bollerslev (1986). For a
stationary GARCH(1, 1)

ρ1 = α1 +
[
α2
1β1

/(
1− 2α1β1 + β2

1

)]
,

ρk = (α1 + β1)
k−1

ρ1, for all k = 2, 3, . . . .

In other words, the autocorrelations decline exponentially with a
decline factor equal to α1 + β1.

As in the case of ARCH models, it is necessary to impose
some restrictions on σ2

t to ensure that it is positive for all t.
Bollerslev (1986) showed that ensuring that ω > 0, αi ≥ 0
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(for i = 1, . . . , q) and βj ≥ 0 (for j = 1, . . . , p) are suffi-
cient to ensure that the conditional variance is positive. In prac-
tical situations, the parameters in a GARCH-type model are es-
timated without using positivity restrictions. Nelson and Cao
(1992) stated that imposing the condition that all coefficients
are non-negative is too restrictive and that some of them may
in practical situations be negative while the conditional variance
remains positive (reviewing a good number of real-life situa-
tions). They consequently relaxed this fact and established suf-
ficient conditions for the GARCH(1, q) and GARCH(2, q) cases
based on the infinite representation given in (12). Indeed, we
can see that the conditional variance is strictly positive provided
ω |1− β (L)|−1 is positive and all coefficients of the polynomial
α (L) |1− β (L)|−1 in (12) are nonnegative. The positivity re-
strictions proposed by Bollerslev (1986) can be fixed during the
estimation. If not, they, as well as those imposed during the
ARCH(∞), representation, will be tested a posteriori if there is
no explanatory variable in the conditional variance equation.

4.1 Distributions and estimation
There are basically three methods for estimating ARCH-

GARCH type models:

1. The most commonly used one, and the one we will work
with in this case, is the standard estimation by maximum
likelihood. This uses Newton’s quasi-maximum likeli-
hood method developed by Broyden, Fletcher, Goldfrab
and Shanno (or BFGS according to its acronym).

2. An optimization technique that implements quadratic se-
quence programming to maximize a nonlinear function,
subject to nonlinear constraints similar to Algorithm 18.7
in Nocedal and Wright (1999). This is particularly useful
when imposing positivity or stationarity constraints such as
α1 > 0 in an ARCH model.

3. And finally a simulation algorithm to optimize non-smooth
functions with multiple possible local maxima.

In our case, the estimation in ARCH-GARCH type models is
carried out using the quasi-maximum likelihood method, so it is
necessary to make an additional assumption about the innovation
process εt, that is, to choose the density function D (0, 1) that
has a mean equal to zero and a unitary variance.

Weiss (1986) and Bollerslev and Woolridge (1992) showed
that under the assumption of normality, the quasi-maximum like-
lihood estimator (or QML according to its acronym) is consistent
if the conditional mean and the conditional variance are correctly
specified. This estimator is, however, inefficient with an increas-
ing degree of inefficiency as it deviates from that normality (En-
gle and González-Rivera 1991).

As stated by Palm (1996), Pagan (1996) and Bollerslev,
Chou and Kroner (1992), the use of heavy-tailed distributions
is widespread in the literature. Bolleslev (1987), Hsieh (1989),
Baillie and Bolleslev (1989) and Palm and Vlaar (1997) among
others, showed that these distributions perform better when cap-
turing higher order kurtosis.

For our problem, we will consider three distributions when
approaching the estimation process; the normal distribution, the

Student t distribution and the skewed-Student distribution.
The logic of the maximum likelihood method is to interpret

the density as a function of the set of parameters, conditional on
the set of sample observations. This function is called the likeli-
hood function. It is evident from (8) that the recursive evaluation
of this function is conditional on the observed values. For this
reason, we will consider the approximate or conditional maxi-
mum likelihood and not the exact maximum likelihood.

The logarithm of the likelihood function for the standard nor-
mal distribution is given by

lnorm = −1

2

n∑
t=1

[
log (2π) + log

(
σ2
t

)
+ ε2t

]
, (13)

where n is the number of observations.
For a Student t distribution this function is

lStud = n

{
log Γ

(
ν + 1

2

)
− log Γ

(ν
2

)
− 1

2
log [π (ν − 2)]

}
−1

2

n∑
t=1

[
log
(
σ2
)
+ (1 + ν) log

(
1 +

ε2t
ν − 2

)]
, (14)

where ν are the degrees of freedom, with 2 < ν ≤ ∞ and Γ (·)
is the gamma function.

For a skewed Student distribution (with mean zero and vari-
ance one) this function is

lSkSt = n

{
log Γ

(
η + 1

2

)
− log Γ

(η
2

)
− 1

2
log [π (η − 2)]

+ log

(
2

ξ + 1
ξ

)
+ log(s)

}

−1

2

n

t=1

{
log(σ2

t ) + (1 + η)

[
1 +

(sεt +m)2

η − 2
ξ−2It

]}
,

(15)

where

It =

{
1 if εt ≥ −m

s
−1 if εt < −m

s

,

ξ is the asymmetry parameter, η are the degrees of freedom of
the distribution,

m =
Γ
(
η−1
2

)√
η − 2

√
πΓ
(
η
2

) (
ξ − 1

ξ

)
,

and

s =

√(
ξ2 +

1

ξ2
− 1

)
−m2.

It is important to note that this last function is the one that will
be used when analyzing our data set.

There are other distributions that can be used to carry out the
estimation process, such as the generalized error distribution or
GED, but we will not develop them in our work since they are
not objects of our research.

In terms of the estimation process, we can say that many au-
thors have proposed using a Student t distribution or a skewed
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Student distribution in combination with a GARCH type model
to adequately model the heavy tails in economic or financial time
series whose data are of high frequency, which will be seen later.

5 MODELS FOR STOCHASTIC VOLATILITY

We will say that the series yt follows a stochastic volatility
model (SVM) if

yt = σtεt, (16)

σt = e
ht
2 , (17)

where εt is a stationary series with mean equal to zero and vari-
ance one, and ht is another stationary series with probability den-
sity given by a function f (h).

As we can see in (17), ht is not equal to the volatility σ2
t as is

usually the notation in the ARCH-GARCH family models.
The simplest formulation of the model assumes that the loga-

rithm of volatility is given by

ht = α0 + α1ht−1 + ηt, (18)

where ηt is a stationary, Gaussian series, with mean zero, vari-
ance σ2

η and independent of εt. It follows from this that we must
have |α1| < 1.

5.1 Other SVM formulations

Other SVM formulations can be found in the literature, among
which we highlight the following:

1. Canonical form of Kim, Shephard and Chib (1998). In this
case the SVM is written as

yt = βe
ht
2 εt, (19)

ht = µ+ α1(ht−1 − µ) + σηηt, (20)

with

ht ∼ N

(
µ,

σ2
η

1− α2
1

)
, (21)

where εt and ηt are both N(0, 1) and independent of each
other. If β = 1, then µ = 0.

2. The Jaquier, Polson and Rossi (1994) form of the SVM is
equal to

yt =
√
htεt, (22)

log(ht) = α0 + α1 log(ht−1) + σηηt, (23)

where εt and ηt are both N(0, 1) and independent of each
other.

5.2 Properties of SVM

Let us return to the model defined in the equations (16), (17) y
(18). Suppose that {εt} constitutes a succession of independent
random variables such that εt ∼ N(0, 1), then log(ε2t ) has a

distribution called “log chi square”, such that

E{log(ε2t )} ≈ −1, 27, (24)
var{log(ε2t )} = π2/2. (25)

From (16), (17) and (18) we get

log(y2t ) = log(σ2
t ) + log(ε2t ), (26)

ht = log(σ2
t ) = α0 + α1ht−1 + ηt. (27)

Calling ξt = log(ε2t ) − E{log(ε2t )} ≈ log(ε2t ) + 1, 27, we
have that E(ξt) = 0, var(ξt) = π2/2 and

log(y2t ) = −1, 27 + ht + ξt, ξt ∼ iid (0, π2/2), (28)
ht = α0 + α1ht−1 + ηt, ηt ∼ iid N(0, σ2

η),(29)

where iid means that the variables are independent and identi-
cally distributed. It is also assumed that ξt and ηt are indepen-
dent of each other at all times.

From the equations (16), (17) and (18) let us calculate some
moments of the SVM. Taking expectation of (16) we have

E(yt) = E(σtεt) = E(σt)E(εt) = 0, (30)

given that σt and εt are independent.
The variance of yt is

var(yt) = E(y2t ) = E(σ2
t ε

2
t ) = E(σ2

t )E(ε2t ) = E(σ2
t ). (31)

Since we assume that ηt ∼ N(0, σ2
η) and that ht is stationary

with
E(ht) =

α0

1− α1
= µh, (32)

and with

var(ht) =
σ2
η

1− α2
1

= σ2
h, (33)

we have that

ht ∼ N

(
α0

1− α1
,

σ2
η

1− α2
1

)
. (34)

Since ht is normal or Gaussian, σ2
t = eht is log-normal, then

we have

var(yt) = E(y2t ) = E(σ2
t ) = eµh+σ2

h/2. (35)

It is not difficult to show that

E(y4t ) = 3e
2µh+2σ2

h , (36)

from which we obtain that the kurtosis of yt is

K(yt) =
3e

2µh+2σ2
h

e
2µh+σ2

h

= 3e
σ2
h > 3, (37)

as expected, that is, there are heavy tails for the SVM.
The autocovariance function of the series yt is given by

γy(s) = E(ytyt+s) = E(σtσt+sεtεt+s) = 0, (38)
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since εt and ηt are independent. Then yt is serially uncorrelated
but not independent since there is correlation in log(y2t ). Let us
denote as zt = log(y2t ), then the autocovariance function of the
series zt is given by

γz(s) = E[(zt − E(zt))(zt+s − E(zt+s))]. (39)

As the first term in parentheses of (39) is equal to ht−E(ht)+ξt
and ht is independent of ξt, we get

γz(s) = E[(ht − E(ht) + ξt)(ht+s − E(ht+s) + ξt+s)]

= E[(ht − E(ht))(ht+s − E(ht+s))]

+E(ξtξt+s), (40)

and calling γh(s) and γξ(s) respectively to the autocovari-
ances of the right hand of (40), we have

γz(s) = γh(s) + γξ(s), (41)

for all s.
As we are assuming that (18) is satisfied, that is, we have a

AR(1) model, we get

γh(s) = αs
1

σ2
η

1− α2
1

, s > 0. (42)

Besides γξ(s) = 0 for s > 0. Then, γz(s) = γh(s) for all
s ̸= 0. With this we can write the autocorrelation function of
zt = log(y2t ) as

ρz(s) =
γz(s)

γz(0)
=
αs
1σ

2
η/(1− α2

1)

γh(0) + γξ(0)
, s > 0, (43)

from which we get

ρz(s) =
αs
1

1 + π2

2σ2
η

, s > 0,

which tends to zero exponentially from the lag s = 2, and this in-
dicates that zt = log(y2t ) can be modeled using an AR(1) model.

En la práctica obtenemos valores de α1 próximos de uno, lo
que implica la aparición de altas correlaciones para la volatilidad
y consecuentes grupos de volatilidades en la serie.

A general SVM can be obtained if an AR(p) model is admitted
for ht, that is

yt = σtεt, (44)

σt = e
ht
2 , (45)

(1− α1B − α2B
2 − · · · − αpB

p)ht = α0 + ηt, (46)

where the lag operator is defined as Bjht = ht−j , the assump-
tions about the innovations εt and ηt are the same as those made
previously, but now we assume that the roots of the polynomial
(1− α1B − α2B

2 − · · · − αpB
p) are outside the unit circle.

The SVM have been extended to include the fact that volatility
has long memory, in the sense that the autocorrelation function
of zt = log(y2t ) slowly decays, although as we saw in this case,

the yt have no serial correlation.

5.3 Estimation of the SVM
SVM models are difficult to estimate. We can use the ap-

proach proposed by Durbin and Koopman (1997a, 1997b, 2000,
2001, 2012) which consists of using a quasi-maximum likeli-
hood procedure by means of the Kalman filter and smoother. In
this case, the model defined in the equations (16), (17) y (18) can
be re-expressed in the form

yt = σεte
ht
2 , (47)

σt = σe
ht
2 , (48)

ht = α1ht−1 + ηt, (49)

where σ = exp(α0/2) is a scale factor, α1 is a parameter, and
ηt is a disturbance term which in the simplest model is uncor-
related with εt. Literature reviews of this model were carried
out by Shephard (1996, 2005) and Ghysels, Harvey and Renault
(1996). This SVM has two main attractions. The first is that
it is a discrete-time natural (Euler) analogue of the continuous-
time model used in option pricing work, such as that of Hull
and White (1987). The second is that its statistical properties are
easy to determine. The disadvantage with respect to conditional
variance models of the GARCH type is that likelihood-based
estimation can only be performed by computationally intensive
techniques such as those described in Kim, Shephard and Chib
(1998) and Sandmann and Koopman (1998). However, a quasi-
maximum likelihood method is relatively easy to implement and
is usually reasonably efficient. The method is based on writing
(47), (48) y (49) in the following equivalent form

log
(
y2t
)

= κ+ ht + ξt, (50)
ht = α1ht−1 + ηt, (51)

where ξt = log
(
ε2t
)
− E{log

(
ε2t
)
} and κ = log

(
σ2
)
+

E{log
(
ε2t
)
}.

The equations (50) and (51) are expressed in the form of state
space, as can be seen in Abril and Abril (2018). The formula (50)
is called the observation equation or measurement equation and
the formula (51) is called the state equation or transition equa-
tion. The estimation process is therefore carried out using the
Kalman filter and smoother in the same way as those developed
in the previous reference.

It is important to make some observations here:

1. When α1 in (51) is close to 1, the fit of an SVM is sim-
ilar to that of a GARCH(1, 1) model with the sum of its
coefficients close to 1.

2. When α1 = 1 in (51), ht is a random walk and the fit of an
SVM is similar to that of an IGARCH(1, 1) model.

3. When some observations are equal to zero, which can occur
in practice, the logarithmic transformation specified in (50)
cannot be performed. One way to avoid this problem is
to subtract the overall mean of the series yt of each of the
observations and taking this result as the series to work on;
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that is, taking as a working series

yt − y, t = 1, . . . , n, (52)

where y = n−1
∑n

t=1 yt. Another solution, suggested
by Wayne Fuller and analyzed by Breidt and Carriquiry
(1996), is to make the following transformation based on
a Taylor expansion

log
(
y2t
)
= log

(
y2t + cS2

y

)
−

cS2
y

y2t + cS2
y

, t = 1, . . . , n,

(53)
where S2

y is the sample variance of the series yt and c is
a small number. Versions prior to 8.3 of the STAMP pro-
gram developed by Koopman, Harvey, Doornik, and Shep-
hard incorporated the transformation defined in (53) with
c = 0, 02 as a pre-specified operation that could be used
if needed. Starting with version 8.3 of that program (see
Koopman, Harvey, Doornik, & Shephard, 2010) that trans-
formation was no longer a pre-specified element, and that
or other transformations could be performed, such as the
one defined in (52), by using the calculator or the availabil-
ity of Algebra within that program according to the user’s
requirements and needs.

As shown in Harvey, Ruiz and Shephard (1994), the state
space form given by the equations (50) and (51) provides the
basis for quasi-maximum likelihood estimation via the Kalman
filter and smoother and also allows for constructing smoothed
estimates of the component ht of the variance and make pre-
dictions. One of the attractions of the quasi-maximum likeli-
hood approach is that it can be applied without an assumption
about a particular distribution for εt. Another attraction of using
a quasi-maximum likelihood procedure using Kalman filter and
smoother to estimate SVM is that it can be carried out directly us-
ing standard computing packages such as STAMP by Koopman,
Harvey, Doornik, and Shephard (2010). This is a major advan-
tage compared to more labor-intensive simulation-based meth-
ods.

Shephard and Pitt (1997) proposed the use of importance sam-
pling to estimate the likelihood function in the non-Gaussian
case.

Since the SVM is a hierarchical model, Jaquier, Polson, and
Rossi (1994) proposed a Bayesian analysis of the model. See
also Shephard and Pitt (1997) and Kim, Shephard, and Chib
(1998). An overview of the SVM estimation problem is provided
by Motta (2001).

5.4 Series with errors following a SVM with struc-
tural components

The basic SVM given in (47), (48) and (49) captures only the
salient features of changing conditional heteroscedasticity in a
time series. In some cases the model is more accurate when the
series yt is modeled by incorporating structural components, ex-
planatory variables and other characteristics that explain its be-
havior, all of this done through a state space scheme with errors
that follow a SVM with structural components, for example with
seasonality. Based on the above, for a univariate series yt, this

can be formulated as

yt = Ztβt + νt, (54)
βt = Ttβt−1 +Rtωt, ωt ∼ N(0,Qt), t = 1, . . . , n,(55)

with

νt = σe
ht
2 εt, (56)

σt = σe
ht
2 , (57)

ht = α1ht−1 + ηt, (58)

where βt is the state vector of order m × 1, ωt are serially in-
dependent disturbances, independent of each other and indepen-
dent of νt at all times. The system matrices Zt, Tt, Rt y Qt

have dimensions 1×m, m×m, m×m andm×m respectively,
and if there are unknown elements in them, they are incorporated
into the vector ψ of hyperparameters which is estimated by max-
imum likelihood. (54) is called measurement equation or obser-
vation equation and (55) transition equation or equation of state.
The equations (54) y (55) define a state space model with all the
characteristics and properties of the same presented in Abril and
Abril (2018). In effect, there can be trends, seasonality, cycles,
explanatory variables and other important characteristics that ex-
plain the behavior of the process {yt}. The equations (56), (57)
and (58) define an SVM with structural components (seasonality
in this case) for the errors of the state space model given above,
where εt is a stationary series with mean equal to zero and vari-
ance one, and ηt is a stationary, Gaussian series, with mean zero,
variance σ2

η and independent of εt at all times.

The estimates of the state space models are performed us-
ing standard computing packages such as STAMP by Koopman,
Harvey, Doornik, and Shephard (2010), which is the one used in
this work.

In this case, the volatility is equal to

σ2
t = σ2eht . (59)

The practical treatment in these cases is as follows: given a se-
ries {yt}, the linear components that can explain the behavior of
its mean are identified, including the explanatory variables that
may correspond, in such a way as to explicitly define the model
of the equations (54) and (55).This first performs filtering and
then smoothing of Kalman, obtaining the smoothed estimator β̂t
of the the state vector βt. This estimator allows to calculate the
smoothed residuals as

ν̂t = yt − Ztβ̂t, t = 1, . . . , n. (60)

These smoothed residuals estimate the disturbances νt. The val-
ues of ν̂t serve as a basis for testing the null hypothesis of lack of
serial correlation of νt. If this hypothesis is accepted, it could be
said that the model given in the equations (54) and (55) was ad-
equately identified, defined and estimated. On the other hand, if
log(ν̂2t ) shows serial correlation, it can be said that the errors νt
follow an SVM of the form given in (56), (57) and (58). There-
fore, it is taken to ν̂t as the observed series and the following
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state space model is estimated

log
(
ν̂2t
)

= κ+ ht + ξt, (61)
ht = α1ht−1 + ηt, (62)

where ξt = log
(
ε2t
)
− E{log

(
ε2t
)
}, κ = log

(
σ2
)
+

E{log
(
ε2t
)
}, εt is a stationary series with mean equal to zero

and variance one, and ηt is a stationary, Gaussian series, with
mean zero, variance σ2

η and independent of εt at all times. The
process of estimating (61), (62), is done using the Kalman filter
and smoother.

As shown in Harvey, Ruiz and Shephard (1994), the state
space form given by the equations (61) and (62) provides the
basis for quasi-maximum likelihood estimation via the Kalman
filter and smoother and also allows for constructing smoothed
estimates of the component ht, of the variance and make pre-
dictions. One of the attractions of the quasi-maximum likeli-
hood approach is that it can be applied without an assumption
about a particular distribution for εt. Another attraction of using
a quasi-maximum likelihood procedure using Kalman filter and
smoother to estimate SVM is that it can be carried out directly us-
ing standard computing packages such as STAMP by Koopman,
Harvey, Doornik, and Shephard (2010). This is a major advan-
tage compared to more labor-intensive simulation-based meth-
ods.

6 ANALYSIS OF THE SERIES UNDER STUDY
The data we handle belong to a very special field within sta-

tistical science, which is that of time series. The common char-
acteristic of all records belonging to the domain of time series is
that they are influenced, even if only partially, by non-observable
components that contain random variations, that is, the occur-
rence of unplanned events.

As an application, the Merval index series is analyzed. This
is a series with information corresponding to all working days
of the stock market. Specifically, we work with the returns of
the quotes of this index, which consists of the first differences
of the logarithm of the Merval levels. The period analyzed goes
from January 13, 2003 to May 22, 2015. There are 3006 obser-
vations. It covers a period in which there was no change in the
government’s affiliation. In fact, during that period the wing of
Peronism called Kirchnerism governed. This eliminates the ef-
fects that could have been introduced in the market by changes
in the governing group.

It is important to note that although this is a very long period
to analyze, it is possible to carry out a very interesting study in
which the main characteristics of the series can be appreciated.

First, we proceed to graph it. Within the study of a series,
graphical methods are an excellent way to begin an investiga-
tion and then be able to dive into a detailed study of the subject
under consideration Among the functions that tables and graphs
perform are the following:

1. They make the data under study more visible, systematize
and synthesize them.

2. They reveal their variations and their historical or spatial
evolution.

3. They can show the relationships between the various ele-
ments of a system or process and provide clues to future
correlations between two or more variables.

Furthermore, the application of these methods suggests new
research hypotheses and allows the subsequent implementation
of statistical models ranging from the simplest to those that are
much more refined, thus achieving a better analysis of the data
and its fluctuations over time.

In Figure 1 the daily series of the Merval from January 13,
2003 to May 22, 2015 is shown. The upper left box shows the
levels, the upper right box shows the first differences of the log-
arithm of the levels called returns, the lower left box shows the
histogram with the distribution of the returns compared to a nor-
mal distribution and the lower right box shows the QQ diagram
of the returns. As can be seen, the returns are not normal, they
have a distribution with some degree of negative asymmetry and
with kurtosis. Carrying out a careful inspection of the graph of
the series of returns, we can see that there are periods where the
volatility is less pronounced than in others, such as the one cor-
responding to the year 2009.

6.1 Analysis using models from the ARCH-GARCH
family

We begin the study of the Merval series by focusing first on
the models of the ARCH-GARCH family and using the Estimat-
ing and Forecasting ARCH Models Using G@RCH 7 package
developed by Laurent (2013).

In Figure 2 we observe that in general the correlations and
partial correlations are close to zero, except for those of order
five and nineteen. This can be interpreted as the presence of two
periodic components, one that coincides with the working week,
which is five days long, and another with the working month,
which is almost twenty days long, which leads us to think of an
autoregressive model of order 20 for the conditional mean.

In Figure 3 we observe the square of the Merval returns, its
distribution compared to a normal one with zero mean and vari-
ance (0.00966)2, the autocorrelation function of that series and
also the partial autocorrelation function of the same series un-
der study. We see that a high-degree ARCH model or a more
parsimonious GARCH model may be suitable to be applied.

Different alternatives were tested regarding the modeling of
the Merval returns series for the period between January 13,
2003, and May 22, 2015. After analyzing them and seeing the
values of different goodness-of-fit statistics, such as the Akaike
Criterion, the Schwarz Criterion, the Schibata Criterion, or the
Hannan-Quinn Criterion, we were left with a model based on the
equation (5) of our work, where yt is the series under study and
its explicit specification is given by

yt = µt + εt ht, (63)

where εt is independent with a skewed Student distribution
whose degrees of freedom are 5.82627 and the asymmetry is
−0.103452. The conditional mean µt is equal to a general mean
given by µ plus an autoregressive process of order 19 but with
all coefficients equal to zero except those of order 1, 5 and 19,
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Figure 1. Exploratory Analysis of the Merval Index (2003-2015)

Note. The figure presents an exploratory analysis of the Merval index series from January 13, 2003, to May 22, 2015. The top left panel shows the
index levels, while the top right panel displays the logarithmic first differences (returns). The bottom left panel illustrates the histogram of returns
compared to a normal distribution, and the bottom right panel presents a QQ plot for assessing normality.

which is explicitly

µt = µ+ φ1yt−1 + φ5yt−5 + φ19yt−19 + νt, (64)

where νt = εtht of (63). Furthermore, the conditional variance
in (63) is given by

h2t = σ2
t = ω + α(yt−1 − µt−1)

2 + βσ2
t−1, (65)

that is, it is a GARCH(1, 1) model with a constant given by ω.
The estimated values of the parameters and their corresponding
standard errors for the model we have formulated in (63), (64)
and (65) are expressed in the following Table 1.

In Table 1 we see that the values of the t statistic to test the
null hypothesis that the coefficients φ1 y φ5 are equal to zero,
we are led to accept this hypothesis. Consequently, models were
tested in which one of the coefficients was first removed and the
other was left, then they were exchanged between the one that
was removed and the one that was left and finally both coef-
ficients were removed. In all cases, the goodness-of-fit statis-
tics or information criteria such as Akaike, Shibata, Schwarz and
Hannan-Quinn gave worse results than those obtained by includ-
ing these coefficients. Therefore, it was decided to leave them in
the model to be estimated.

In Figure 4 we have, at the top, the conditional variance
(volatility) of the Merval returns series for the period between
January 13, 2003, and May 22, 2015, and the distribution of
the standardized residuals after the adjustment compared with an

asymmetric Student distribution with mean zero, variance one,
whose degrees of freedom are 5.82627 and the asymmetry is
−0.103452. From here we see that the adjustment is adequate
due to the similarity between the distribution of the standardized
residuals and the skewed Student distribution.

At the top of the Figure 5 the last ten observations of the series
under study can be seen in blue, and the corresponding predic-
tions (in red) of the conditional mean. The vertical bars corre-
spond to the 95% confidence intervals that serve to compare the
predicted value with that which is actually observed. In the lower
part, the conditional variance corresponding to the last ten obser-
vations of our series under study is predicted. As can be seen, the
predicted conditional variance, or volatility, increases smoothly
over time, which is reasonable for a small market where there are
usually no major changes in the values of financial assets listed
on the stock exchange.

6.2 Analysis using SVM

We continue with the study of the Merval. Now using SVM.
To perform the analysis and the estimates we use the STAMP
computing package by Koopman, Harvey, Doornik, and Shep-
hard (2010). It should be remembered that this program performs
the estimates by quasi-maximum likelihood via the Kalman fil-
ter and smoother. After analyzing the series (see Figures ?? and
??), and after studying several alternative models the following
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Figure 2. Autocorrelation and Partial Autocorrelation of the Merval Returns (2003-2015)

Note. The figure illustrates the autocorrelation (top panel) and partial autocorrelation (bottom panel) functions of the Merval returns series for the
period between January 13, 2003, and May 22, 2015. These functions help identify the time dependence structure of the series.

Table 1: Estimated Values, Standard Deviations, and t-Statistics for the GARCH(1,1) Model of Merval Returns (2003-2015)

Estimator Estimated value Standard deviation t value Probability
µ̂ 0.001164 0.000319 3.648 0.0003
φ̂1 0.027376 0.018400 1.488 0.1369
φ̂5 −0.033687 0.017660 −1.908 0.0565
φ̂19 0.042393 0.017573 2.412 0.0159
ω̂ 0.105309 0.037825 2.784 0.0054

α̂ARCH 0.092285 0.019477 4.738 0.0000
β̂GARCH 0.883313 0.025945 34.05 0.0000

Asymmetry −0.103452 0.024290 −4.259 0.0000
Degrees of freedom 5.82627 0.61778 9.431 0.0000

Note. This table presents the estimated parameters for the GARCH(1,1) model fitted to the Merval returns series from January 13, 2003, to May
22, 2015. The parameters include the mean (µ̂), autoregressive coefficients (φ̂), conditional variance parameters (ω̂, α̂ARCH , β̂GARCH ), and the
asymmetry term. The degrees of freedom estimate corresponds to the assumed residual distribution.
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Figure 3. Analysis of the Squared Merval Returns (2003-2015)

Note. The figure presents an analysis of the squared Merval returns from January 13, 2003, to May 22, 2015. The top left panel shows the squared
returns, while the top right panel compares their distribution to a normal one with zero mean and variance (0.000966)2. The bottom left panel displays
the autocorrelation function of the squared returns, and the bottom right panel presents the corresponding partial autocorrelation function.

Figure 4. Conditional Variance and Residual Distribution of Merval Returns (2003-2015)

Note. The top panel displays the conditional variance (volatility) of the Merval returns series from January 13, 2003, to May 22, 2015. The bottom
panel shows the distribution of the standardized residuals after the adjustment, compared with a skewed Student-t distribution. The estimated degrees
of freedom for this distribution are 5.82627, and the asymmetry parameter is −0.103452.
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was decided upon

yt = µ+ θ1yt−1 + θ5yt−5 + θ19yt−19 + νt, (66)

with

νt = σe
ht
2 εt, (67)

σt = σe
ht
2 , (68)

ht = α1ht−1 + ηt, (69)

where equations (67), (68) and (69) define a SVM, εt is a sta-
tionary series with mean equal to zero and variance one, and ηt
is a stationary, Gaussian series, with mean zero, variance σ2

η and
independent of εt at all times.

This part of the study begins by estimating the model given
in the equation (66). The first thing to be observed is that the
Doornik-Hansen normality statistic, whose distribution under the
null hypothesis of normality of the errors is a χ2

2, gives a value
of 652.86, which is very high and leads to rejecting the null hy-
pothesis. This is not surprising since there is no Gaussianity
(see Figure ??) and volatility is present. The H(994) test for
heteroscedasticity, which is distributed as an F (994, 994) under
the null hypothesis of presence of heteroscedasticity in the se-
ries, gives a value of 1.4193, which leads to rejecting the hy-
pothesis of existence of heteroscedasticity. Finally, the Box-
Ljung q statistic, which in this case is distributed as χ2

53 gives
a value equal to 74.908, which leads to accepting the hypothesis
of lack of serial correlation in the residuals. On the other hand,
σ̂2
y = 0.0004, and σ̂2

ν = 0.00039523.
In Table 2 the estimated values of the parameters of the equa-

tion (66) are shown, the respective standard deviations, the val-
ues of the t statistic to test the null hypothesis that the respective
parameter is equal to zero and the probabilities in the tails cor-
responding to that hypothesis test. If these probabilities are less
than 0.05, the respective hypothesis is rejected at that level of
significance. As we see in these figures, except for the coef-
ficient θ1, all other coefficients are significantly different from
zero. In the case of the coefficient θ1, models were tested in
which it was eliminated, but the goodness-of-fit tests (Akaike
and others) always gave worse results than those obtained in this
case in which it was included. Therefore, it was decided to con-
tinue working with this proposal and this gives us an idea that
the adopted model is the appropriate one.

To study volatility, because errors νt of the model (66) are not
observable, they are estimated by the residues of the same after
the corresponding estimates and are denoted as ν̂t. The latter is
the series with which we work to estimate everything related to
volatility.

After being estimated the model given in (66), its standardized
residuals are shown at the the upper left part of Figure 6, in the
upper right part is its estimated autocorrelation function, then, in
the lower left part is the estimated spectral density and finally in
the lower right part is the estimated density function which is rep-
resented by a red line, compared with the normal density func-
tion which is represented by a green line. In this Figure we see
that the residuals do not differ significantly from a series without
serial correlation and approximately normal. Thus, for example,

the estimated autocorrelations are practically within the confi-
dence band, which implies that the respective parameters of a
possible model do not differ from zero, and the oscillations of
the spectral density are insignificant compared to its scale. The
respective statistics also support these assertions.

To apply the state space scheme and to be able to make the
respective estimates of volatility, the series of residuals must be
squared and then logarithms must be taken. With this we arrive
at the model given in (67), (68) and (69). It is then prepared
to apply the state space scheme, that is, the following model is
estimated

log
(
ν̂2t
)

= κt + ht + ξt, (70)
ht = α1ht−1 + ηt, (71)

where κt is the stochastic level. In Figure 7 the logarithm of the
squared residuals of the model given in (66) after estimation is
shown at the top left, at the top right is the estimated autocor-
relation function, then at the bottom left is the estimated partial
autocorrelation function and finally at the bottom right is the es-
timated density function which is represented by a red line, com-
pared to the normal density function which is represented by a
green line. It is clearly seen there that the model given in (61)
and (62) is the right one.

By estimating the model given in (61) and (62) we found
that σ̂2

log(ν̂2
t )

= 5.4272, σ̂2
ξ = 5.12422, σ̂2

η = 0.296033, the
level κ is stochastic with variance equal to 0.00162343, and
κ̂ = −0.89350 at the end of the period.

The normality statistic gives a value of 624.44 which is high.
This is inevitable because the transformed model (61) and (62)
is not Gaussian. This should not worry us. On the other hand,
the estimates of α1 is α̂1 = 0.91838, which is high as expected.

In Figure 8 the logarithm of the squared residuals of the model
given in (66) is shown at the top after having been estimated
(black line) and the estimated level (red line), in the central part
is the estimated AR(1) component whose equation is given in
(62) and finally at the bottom are the estimates of the irregular
component of (61).

From (68) it follows that volatility is equal to

σ2
t = σ2eht , (72)

which has two multiplicative components which are: a scale con-
stant σ2 and basic volatility eht . Of these two components, the
basic volatility is obviously the most important one since the
other is a multiplicative constant. The basic volatility is esti-
mated as eĥt where ĥt is

ĥt = α̂1ĥt−1, (73)

with α̂1 = 0.91838, which is the estimated value of α1. To
estimate σ2, the estimated series of the irregular component of
(66) corrected for basic heteroscedasticity is calculated, i.e.

ν̃t = ν̂t exp

{
− ĥt

2

}
, (74)

and then the variance σ̃2 of ν̃t is computed, which is an estimate
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Table 2: Parameter Estimates for the Model of Merval Returns (2003-2015)

Estimator Estimated value Standard deviation t value Probability

θ̂1 0.03518 0.01824 1.92877 0.05385

θ̂5 −0.04962 0.01825 −2.71835 0.00660

θ̂19 0.06633 0.01824 3.63729 0.00028

Note. This table presents the estimated parameters for the model fitted to the Merval returns series from January 13, 2003, to May 22, 2015. The
parameters include autoregressive coefficients (θ̂1, θ̂5, θ̂19), their standard deviations, t-values, and the corresponding probabilities, which indicate their
statistical significance.

Figure 5. Conditional Variance and Residual Distribution of Merval Returns (2003-2015)

Note. The top panel displays the conditional variance (volatility) of the Merval returns series from January 13, 2003, to May 22, 2015. The bottom
panel shows the distribution of the standardized residuals after the adjustment, compared with a skewed Student-t distribution. The estimated degrees
of freedom for this distribution are 5.82627, and the asymmetry parameter is −0.103452.
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Figure 6. Residual Analysis of the Merval Returns Model (2003-2015)

Note. The figure presents the residual analysis of the model defined in Equation (66) for the Merval returns series from January 13, 2003, to May 22,
2015. The top panel displays the estimated autocorrelation function of the residuals, while the bottom panels show the estimated spectral density and
the residual distribution. These diagnostics help assess the adequacy of the fitted model.

Figure 7. Analysis of the Log-Squared Residuals of the Merval Returns Model (2003-2015)

Note. The figure presents the analysis of the log-squared residuals of the model defined in Equation (66) for the Merval returns series from January
13, 2003, to May 22, 2015. The top panel displays the estimated autocorrelation function, while the middle panel presents the estimated partial
autocorrelation function. The bottom panel shows the residual distribution, helping assess the properties of the squared residuals.
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of σ2. The calculated value in our case is σ̃2 = 0.819646. With
this, and based on (68), we have that the estimated volatility is

σ̂2
t = σ̃2eĥt . (75)

Figure 9 shows the estimated conditional variance,
σ̃2 exp{ĥt}, for the entire period studied. It is important
to note that there is a peak corresponding to October 22, 2008.
At that time, between October 14 and 24 of that year (between
observation 1403 and observation 1411) there was a sharp fall
in the stock market, capital flight, and a significant rise in the
value of the dollar. This is also seen when working with the
ARCH-GARCH family of models, as can be seen in the upper
part of Figure 4. Also observed in Figure 9 is a minor depression
close to September 19, 2008 (observation 1387) corresponding
to the rise in stocks on Wall Street due to the US bailout plan, a
peak between June 16 and 26, 2014 (between observation 2781
and observation 2788) corresponding to an adverse ruling by the
US Supreme Court on Argentina’s debt, and others.

In order to detect possible relationships between the series
studied and volatility, Figure 10 shows the estimated conditional
standard deviation, i.e. σ̂t, versus the standardized residuals of
the model defined in the equation (66) for the Merval returns se-
ries for the period between January 13, 2003 and May 22, 2015.
It is clear that no structure is observed that relates them.

In Figure 11 we can see, at the top, the last ten observations
of the series under study, in red, and the corresponding predic-
tions (in blue) of the conditional mean (model given in (66)), in
the middle part are the residuals of that estimated model with
the corresponding 95% confidence band that serve to determine
if the residuals differ significantly from zero, so it is observed
that they do not differ significantly from zero. In the lower part,
these residuals are shown but standardized, that is, they are trans-
formed so that they have a mean of zero and variance of one.
With this we can say that the fit is adequate.

Figure 12 shows the prediction of the log
(
ν̂2t
)

series where
the ν̂t are the residuals of the estimation of (66) in blue) versus
the observed series of log

(
ν̂2t
)

for the period between January
13, 2003 and May 22, 2015 (the ones corresponding to the last
ten observations are shown) (top). Residuals of the adjustment
of the model (70) (in blue) with a 95% confidence band (middle
part) and the graph of these residuals after having been standard-
ized. As we can see, it can be concluded that the adjustment is
adequate.

7 FINAL CONSIDERATIONS

The series studied is made up of the first differences of the log-
arithm of the level of the Merval index. This is a stock market
index calculated at the Buenos Aires Stock Exchange (BCBA),
Argentina. It is a series with information corresponding to all
working days of the stock market. The period analyzed goes
from January 13, 2003 to May 22, 2015. There are 3006 observa-
tions. It covers a period in which there was no change in govern-
ment affiliation. This eliminates the effects that could have been
introduced into the market by changes in the governing group.

In our research, we set out to analyze methods for dealing with
a wide variety of data with irregularities that occur in time series.

Autoregressive integrated moving average models (or ARIMA
models) are often considered to provide the main basis for mod-
eling any time series. However, given the current state of devel-
opment of time series research, there may be more attractive and,
above all, more efficient alternatives. Many economic time se-
ries do not have a constant mean and also in most cases there are
phases where relative calm reigns followed by periods of signifi-
cant changes, i.e. variability changes over time. This behavior is
what is called volatility.

To remedy this fact and to take into account the presence of
volatility in an economic series, it is necessary to resort to models
known as conditional heteroscedastic models. In these models,
the variance of a series at a given point in time depends on past
information and other data available up to that point in time, so
a conditional variance must be defined, which is not constant
and does not coincide with the overall variance of the observed
series.

Among the models we have presented are the models of the
ARCH family. The ARCH models or autoregressive models with
conditional heteroscedasticity were first presented by Engle in
1982 with the objective of estimating the variance of inflation.
The basic idea of this model is that yt s not serially correlated
but the volatility or conditional variance of the series depends on
the past of the series by means of a quadratic function. However,
these models are rarely used in practice due to their simplicity.

A good generalization of this model is found in the GARCH-
type models introduced by Bollerslev (1986). This model is also
a weighted average of a quadratic function of the past of the se-
ries, but it is more parsimonious than the ARCH-type models
and even in its simplest form it has proven to be extremely suc-
cessful in predicting conditional variances, so we decided to use
them when working with our data.

The old saying “A painting worths more than thousand words”
is quite true in the analysis of any set of information. Before
applying any statistical method to the data under study, it is es-
sential to observe it graphically in order to become familiar with
it. This can have numerous benefits, as we have explained at the
beginning of our analysis, since this process will serve as an in-
dicator of ideas for a more detailed later study. This was the first
step in our work in which we were able to see the main char-
acteristics of the series and it helped us to make an appropriate
adjustment to it.

Firstly, we decided to fit a GARCH-type model that captures
the main characteristics of the data. We saw that it adequately
takes into account the volatility of the series. With this analy-
sis we have been able to capture some situations where volatility
has a very important significance. We understand that the model
used is adequate to predict the series and its components, in par-
ticular the volatility.

In the second part of this work it was decided to use a stochas-
tic volatility approach to analyze the series under study, which
turned out to be very useful in capturing the main characteristics
of the data

The ARCH or GARCH family models assume that the con-
ditional variance (volatility) depends on past values. In other
words, and using the notation we saw above, if σ2

t is the volatil-
ity, the ARCH-GARCH family assumes that it depends on the
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Figure 8. Decomposition of the Log-Squared Residuals of the Merval Returns Model (2003-2015)

Note. The figure presents the decomposition of the log-squared residuals of the model defined in Equation (66) for the Merval returns series from
January 13, 2003, to May 22, 2015. The top panel shows the log-squared residuals with the level estimate. The middle panel displays the estimated
AR(1) component, whose equation is given in Equation (62). The bottom panel presents the estimates of the irregular component, corresponding to
Equation (61).

Figure 9. Estimated Volatility of the Merval Returns (2003-2015)

Note. The figure illustrates the estimated volatility of the Merval returns series from January 13, 2003, to May 22, 2015. The volatility is modeled
using a conditional heteroskedasticity approach, capturing periods of high and low market fluctuations.
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Figure 10. Conditional Standard Deviation and Standardized Residuals of the Merval Returns Model (2003-2015)

Note. The figure compares the estimated conditional standard deviation with the standardized residuals of the model defined in Equation (66) for the
Merval returns series from January 13, 2003, to May 22, 2015. This comparison helps assess whether the standardized residuals exhibit homoskedas-
ticity, validating the adequacy of the volatility model.

Figure 11. Conditional Mean Prediction and Residual Analysis of the Merval Returns Model (2003-2015)

Note. The figure presents the conditional mean prediction from the model defined in Equation (66) for the Merval returns series from January 13, 2003,
to May 22, 2015. The top panel compares the predicted conditional mean (blue) with the observed returns (red), highlighting the last ten observations.
The middle panel shows the model residuals with a 95% confidence band (blue). The bottom panel displays the standardized residuals for further
evaluation of model adequacy.

https://doi.org/10.5281/zenodo.14845739 42



South American Research Journal, 4(2), 25-44
https://sa-rj.net/index.php/sarj/article/view/61 ISSN 2806-5638

Figure 12. Prediction of the Log-Squared Residuals of the Merval Returns Model (2003-2015)

Note. The figure presents the prediction of the log-squared residuals (log(ν̂2
t )) from the model defined in Equation (66) for the Merval returns series

from January 13, 2003, to May 22, 2015. The top panel compares the predicted values (blue) with the observed series (red), highlighting the last ten
observations. The middle panel displays the residuals of the model fit in Equation (70) with a 95% confidence band (blue). The bottom panel presents
the standardized residuals for further diagnostic analysis.

series yj for j < t. On the other hand, the stochastic volatility
model or SVM, proposed for the first time by Taylor (1980, 1986,
1994) does not start from this assumption. This model is based
on the fact that the volatility σ2

t depends on its past values (σ2
j for

j < t) but is independent of the past values of the series under
analysis (yj for j < t). Shephard and Pitt (1997) proposed the
use of importance sampling to estimate the likelihood function in
the non-Gaussian case. Since the MVE is a hierarchical model,
Jaquier, Polson, and Rossi (1994) proposed a Bayesian analysis
of it. See also Shephard (2005), Shephard and Pitt (1997), Kim,
Shephard, and Chib (1998), and Ghysels, Harvey, and Renault
(1996). An overview of the SVM estimation problem is given by
Motta (2001).

As shown in Harvey, Ruiz, and Shephard (1994), the state-
station form provides the basis for quasi-maximum likelihood
estimation via the Kalman filter and smoother and also allows
for constructing smoothed estimates of the variance component
ht and making predictions. One of the attractions of the quasi-
maximum likelihood approach is that it can be applied with-
out an assumption about a particular distribution for εt. An-
other attraction of using a quasi-maximum likelihood procedure
via the Kalman filter and smoother to estimate SVM is that it
can be carried out directly using standard computing packages
such as STAMP by Koopman, Harvey, Doornik, and Shephard
(2010). This is a great advantage compared to more labor-
intensive simulation-based methods. Finally, by using an MVE,
it was possible to estimate the different parts of the volatility (the
scaling constant and the basic volatility).

Finally, we can say that both the ARCH-GARCH family mod-

els and the SVM work very well to estimate and predict volatility.
But the SVMs have the advantage that both in the definition of
their conditional mean given in the equations (54) and (55) and
in the corresponding conditional variance given in the equations
(56), (57) and (58) it is possible to introduce non-observable but
estimable components such as trend, seasonality, cycles, struc-
tural changes, etc., and also explanatory variables, all due to the
fact that these models are put in the form of a state space, which
provides great generality when carrying out the work. Another
important advantage of this approach is that it is estimated using
a procedure based on quasi-maximum likelihood, which gives
great flexibility to the procedure and a lot of robustness to the
estimators.
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