South American Research Journal, 3(1), 37-51  
https://www.sa-rj.net/index.php/sarj/article/view/37  
agrupados en 12 unidades comenzando por los más flexibles  
(
(
cualitativos) y avanzando hacia los menos flexibles  
cuantitativos) hasta en ocho niveles, para luego abordar las  
New organization of research designs  
particularidades de otros diseños incluyendo a los mixtos.  
Además, se discuten algunos hallazgos en relación con la  
naturaleza epistémica de los diseños que anteriormente no  
fueron clasificados por los metodólogos. Esta propuesta  
Nueva organización de los diseños de  
investigación  
proporciona  
a los investigadores una guía clara y  
Patricio Cabrera-Tenecela1  
estructurada para identificar estrategias más específicas al  
desarrollar su investigación. Al comprender las  
1
características  
y
el alcance de cada diseño, los  
University of Salamanca, Miguel de Unamuno Campus.  
investigadores podrán seleccionar el enfoque más  
apropiado.  
Edificio FES Avda. Francisco Tomás and Valiente, s/n.,  
Salamanca, Spain.  
Palabras clave: diseño de investigación, cualitativo,  
cuantitativo, mixto  
E-mail: pcabrera08@usal.es  
Received: March 1, 2023 - Accepted: June 14, 2023 - Published: June  
1
4, 2023  
INTRODUCTION  
ABSTRACT  
Up to now, research manuals have typically focused on  
research approaches and their respective scopes, leaving  
discussions on research designs until the end. However,  
what if we prioritize research designs, starting from the  
simplest and progressing towards the most complex ones?  
The following is an attempt to explore this approach.  
All cultures have been concerned with finding methods  
that allow them to know themselves and the outside world.  
In the beginning, these procedures depended on  
superstitions, as well as on the development of technology,  
but half a century ago, Farrington (1984) picked up  
Aristotle's ideas to emphasize that the search for knowledge  
is not limited to a particular religion, language, or people,  
but to common cognitive interests that go beyond even  
practical utilities. To know to feed curiosity is the most  
important characteristic of science and of the scientist of all  
times and places.  
In the search for knowledge, scientists have invented  
methods of observation and experimentation that scientific  
communities endorse or reject for various reasons.  
Generally, endorsed scientific methods are continually fed  
back and, on rare occasions, revolutions occur that discard  
previously accumulated knowledge because, as Bunge  
(1983) argues, it regularly harmonizes with the bulk of  
previous knowledge.  
Identifying a research design is one of the most  
common problems when planning a scientific project. In this  
methodological proposal, we start from the most cited  
manuals in research methodology to extract, complete and  
reorganize research designs. The books by Bryman (2016),  
Cohen et al. (2017) and Hernández Sampieri et al. (2014)  
are the most cited in the last eight years and occupy the first  
positions of relevance in Google Scholar Based on them and  
on the recommendations of the latest edition of the APA  
Manual, a synthesis of research designs grouped in 12 units  
is proposed, starting with the most flexible (qualitative) and  
moving towards the less flexible (quantitative) up to eight  
levels, and then addressing the particularities of other  
designs, including mixed designs. In addition, some  
findings are discussed in relation to the epistemic nature of  
designs that were not previously classified by  
methodologists. This proposal aims to provide researchers  
with a clear and structured guide to identify more specific  
strategies in the development of their research. By  
understanding the characteristics and scope of each design,  
researchers will be able to select the most appropriate  
approach.  
Key words: research design, qualitative, quantitative,  
mixed  
In the 19th century, ways of systematically  
investigating how individuals and society behave were  
devised (Raynaud, 2022). However, as a reaction to  
positivism, authors such as Dilthey (2000) argued that there  
are human and cultural aspects that cannot be explained, but  
at best interpreted. Under the shelter of philosophical  
theories such as idealism, phenomenology, existentialism,  
social constructivism, structuralism, psychoanalysis,  
symbolic interactionism and postmodernism, inductive  
research designs such as hermeneutics emerged,  
ethnography, phenomenology, narrative, critical discourse  
analysis, action research, among others, tried to understand  
the perspective of both the participants of the study (emic)  
and the researchers (etic) (Páramo Reales et al. , 2020). This  
perspective generated a very marked division, since they  
RESUMEN  
Identificar un diseño de investigación es uno de los  
problemas más comunes al plantear un proyecto científico.  
En esta propuesta metodológica, se parte de los manuales  
más citados en metodología de la investigación para extraer,  
completar y reorganizar los diseños de investigación. Los  
libros de Bryman (2016), Cohen et al. (2017) y Hernández  
Sampieri et al. (2014) son los más citados en los últimos  
ocho años y ocupan los primeros puestos de relevancia en  
Google Académico. Con base en ellos  
y en las  
recomendaciones de la última edición del Manual APA, se  
propone una síntesis de los diseños de investigación  
https://doi.org/10.5281/zenodo.8050508  
37  
South American Research Journal, 3(1), 37-51  
https://www.sa-rj.net/index.php/sarj/article/view/37  
defend the thesis that the social and human sciences require  
their own method, radically different from that of the natural  
sciences. Therefore, the reliability and validity of qualitative  
designs is exhausted in a process of triangulation between  
different sources of information or study categories. Very  
few researchers in this line have questioned the validity of  
employing such subjective techniques in which it is  
impossible to control the researcher's bias and the veracity  
of the results (Rose and Johnson, 2020). Even though  
authors such as Weber have made great generalizations and  
have promoted interpretive research, under the  
philosophical perspective that shelters them, their findings  
are usually not generalizable.  
On the contrary, the hypothetico-deductive method  
used in the natural sciences maintained its course with the  
concern to identify and try to explain reality with techniques  
that attempt to control the researcher's bias. Many  
researchers in the social sciences have continued along these  
lines. The philosophical theories that cover this type of  
research are positivism, realism, materialism, empiricism,  
emergentism, as well as systemism. However, Bunge (2005)  
argues that, although each scientist has his or her beliefs at  
a personal level, when doing science, he or she tends to  
make a pact with realism and materialism, consciously or  
unconsciously, since the principles of these philosophies  
facilitate research in the natural and social sciences. In this  
case, research designs are twofold: observational or  
experimental (Campbell and Stanley, 2015). In both cases,  
there are research designs that are subject to certain rules  
such as validity, reliability, randomization of samples,  
replicability, among others, which demand specialized  
knowledge to avoid statistical dishonesty (Abril and Abril,  
Depending on the approaches outlined above, the  
research possibilities may be flexible or not very malleable.  
However, in a specific research, epistemic discourse is  
superfluous, since what is important is to explain the method  
that will be followed or has been followed in the research.  
Therefore, when designing research, it is necessary to  
identify specific research designs to avoid major surprises  
when executing a project. For example, there are designs  
ranging from tool construction (Carretero-Dios, 2007;  
Gómez and Dorati, 2017), observational description or the  
creation of experiments (Campbell and Stanley, 2015;  
Cárdenas Castro, 2009), to the use of qualitative research  
(Hernández Sampieri et al., 2014), and often these designs  
are combined (Creswell, 2013). A research design presents  
in an orderly fashion the strategies employed throughout an  
investigation.  
According to Kirshenblatt-Gimblett (2006), choosing  
a research design selects a general guideline for logically  
and coherently integrating different components of a study  
to ensure that the research problem is effectively addressed.  
This course includes  
a
plan for data collection,  
measurement, and analysis. For their part, Creswell, and  
Creswell (2017) explain that a collection of procedures and  
techniques is used to collect and analyze the variables  
specified in the research question. Under this concept, the  
type of study, the research problem, the hypotheses, the  
independent and dependent variables, the data collection  
methods, and the statistical analysis plan are described.  
According to Hernández Sampieri et al. (2014), a research  
design is defined as "...a plan or strategy conceived to obtain  
the desired information in order to respond to the problem  
statement..." (p. 128). A research design, in addition to  
specifying the path, facilitates the replicability of the project  
to address the research problem in other places and at other  
times.  
2
021). Functionalist authors such as Durkheim, based on  
these rules of the game, considered that the findings of this  
type of research are susceptible to generalization.  
In the face of the disputes that exist between the  
quantitative and qualitative approaches, a third way has  
emerged, hand in hand with pragmatism: mixed methods.  
Almost all projects that adopt the hypothetico-  
deductive method select designs prior to the research, so that  
their new research, in practice, is guided mainly by theory  
and/or the imagination of new hypotheses (Bunge, 2005).  
Sometimes, when confronted with real-world data, novice  
scientists are forced to replan their research. Re-planning"  
does not necessarily mean "re-planning", but rather  
adjusting the original design. It has happened to more than  
one researcher that he or she has had to reconsider the  
sample or the measurement instruments. However, if there  
is no fraudulent intent to offer something and then deliver  
something else, this should be considered a process  
compatible with scientific fallibilism when it is not possible  
to find an advanced state of the art due to the originality of  
the research. In other cases, addressing novel problems  
involves the creative and critical adaptation of existing  
research designs. After all, the methods of the social  
sciences, like those of the natural sciences, lie in testing  
possible solutions to their problems (Popper et al., 2008). In  
this sense, avoiding planning or replanning may imply  
"
The philosophical basis of pragmatism allows and guides  
mixed methods researchers to use a variety of approaches to  
answer research questions that cannot be addressed by a  
single method" (Doyle et al., 2009). However, it cannot be  
taken for granted that the above debate has been overcome  
in this way, since the mismatch between theory and reality  
is not a problem for a type of research that is not, in  
principle, guided by theory. Another possibility is to  
consider mixed methods as part of interpretive studies since  
they tolerate the error and bias that quantitative research  
tries to control. However, authors such as Bryman (2016)  
propose reverse embedded strategies, as according to him, a  
qualitative design within a cross-sectional quantitative study  
is possible. Whatever the epistemological background,  
mixed methods, in practice, are conquering an increasingly  
common place in the social sciences and health sciences1.  
1
who argues that there are no major differences between epidemiological  
and social science research when it comes to developing quanꢀtaꢀve  
research.  
Regarding the similarity between social science and health science  
research designs, there is at least one proposal developed by Supo (2012),  
https://doi.org/10.5281/zenodo.8050508  
38  
South American Research Journal, 3(1), 37-51  
https://www.sa-rj.net/index.php/sarj/article/view/37  
attempts to force reality to conform to theory, i.e., a lack of  
critical attitude on the part of the researcher. Thus, if a  
researcher believed it possible to conduct an explanatory  
study and only managed to conduct a relational study, or if  
he intended to conduct an experiment but did not achieve  
adequate control and ended up conducting a quasi-  
experiment, his honesty should be translated into identifying  
the new research design. The same cannot be said of those  
who adopt the inductive and interpretative method, since in  
their case they are not guided by theory but by particular  
facts that shape ways of interpreting reality (Bunge, 2005).  
In this case, the designs constitute fewer rigid referents, but  
this does not mean that the possibility of having designs to  
guide the researcher should not be ruled out.  
To understand the above point of view, it is necessary  
to analyze two situations: 1) Sometimes, research designs  
such as instrumental research can contribute to the  
qualitative research of those who seek to formulate  
questions based on psychometric reliability and validity. 2)  
Other designs, such as sentiment analysis, once exclusive to  
hermeneutics, have been extrapolated to the field of data  
analysis to study the public opinion of millions of users who  
express themselves on social networks, which has given  
way to quantitative research designs that will be discussed  
below.  
when biological studies applied to the health sciences have  
very well defined research designs and it is easy for them to  
guide students, masters, or doctoral students in conducting  
research, while in the social sciences, methodologists still  
debate whether to apply research designs in qualitative or  
mixed fields.  
As we have seen, these discussions are very productive  
in the epistemological field. However, in the practical field  
of research, they are a burden, as young researchers are  
often preoccupied with defining the typology, approach,  
level, and type of research, when they could provide greater  
precision in pinpointing a research design. A research design  
is derived from a focus and is precise in scope. The research  
approach can be quantitative, qualitative, or mixed. The  
research design is a plan of methodological strategies  
recognized by the scientific community to address research  
problems. While the scope of a research can be broad or  
narrow, depending on the objectives and limitations of the  
researcher.  
Identifying a research design becomes much more  
important if we consider that one of the most prestigious  
systems of writing and writing, such as the APA (American  
Psychological Association, 2019), in its principles of  
academic writing and publication points out this typology  
for articles and papers: quantitative, qualitative (including  
case studies), mixed, replication, meta-analysis, literature  
review, theoretical, methodological, student papers,  
dissertation and thesis, others (reports, commentaries,  
letters, abstracts, essays, etc.).  
When the design is quantitative or mixed, the APA  
itself states that the research design must be identified.  
However, don't the remaining eight in which the manual  
requires methodological transparency constitute designs  
with possibilities of delimitation in themselves?  
In practice, it appears that research designs can  
develop much more conciliatory strategies than theoretical  
or philosophical antagonisms.  
A recurrent problem faced by new scientists is the  
scarcity of unifying solutions that facilitate understanding  
and methodological decision-making in the face of research  
problems. In this sense, the advantage of demarcating  
research in a research design is to assume the rigor of  
procedures that have been tested by other scientists to avoid  
improvisation. This situation becomes even more inevitable  
Table 1  
Most relevant research methodology sources in English and Spanish according to Google Scholar  
Spanish  
English  
Relevance  
Author  
Quotations  
875  
Author  
Quotations  
1209  
109  
1
2
3
4
5
6
7
8
9
Pimienta-Prieto y De la Orden (2017)  
Quezada Lucio (2021)  
Wan, 2022)  
1960  
363  
105  
78  
958  
87  
6757  
252  
Stokes y Wall (2017)  
Harris et al. (2019)  
Patten (2017)  
Bryman (2016)  
Marvasti (2018)  
Lankoski et al. (2015)  
Walliman (2021)  
Busetto et al. (2020)  
Cohen et al. (2017)  
Oberti y Bacci (2018)  
Villanueva Couhg (2022)  
Toscano (2018)  
73  
2918  
73772  
71  
168  
3109  
622  
Arias Gonzáles y Covinos Gallardo (2021)  
Balboa Barreiro (2018)  
Bisquerra Alzina et al. (2019)  
Luciano (2020)  
1
0
Hernández Sampieri et al., (2014)  
146279  
80593  
Note: In the case of Hernández Sampieri, although there are records on the Internet that there is a 2016 edition, the sixth confirmed edition is from 2014, it was  
decided to keep it given the relevance of the citations of this source in Spanish. The number of citations does not necessarily reflect the quality of the work,  
which is why it is necessary to analyze this indicator with caution, but without losing sight of the criterion of relevance offered by the search engine.  
those in the first 10 positions, i.e., on the first page, as of  
A review of the most cited books on "research  
methodology" in Google Scholar shows the impact of some  
sources in both English and Spanish. Table 1 summarizes  
the author, the relevance according to Google's algorithm  
and the number of citations. Because of their relevance,  
2015 are selected. The search was performed with all the  
words in Spanish: "metodología de la investigación" and, in  
English: "research methods". These two terms are  
equivalent in the sense that their exact translation generates  
an imbalance in the number of citations.  
https://doi.org/10.5281/zenodo.8050508  
39  
South American Research Journal, 3(1), 37-51  
https://www.sa-rj.net/  
It is important to note that the first page returned by the  
search engine contains texts such as book chapters, a  
syllabus of a university course, a scientific article, and  
slides. In all other cases, books are found. In fact, it is books  
that have the highest number of citations. In Spanish, the  
text by Quezada Lucio (2021), in third place; Bisquerra  
Alzina et al. (2019), in eighth place; and Hernández  
Sampieri et al. (2014), in tenth place, stand out. However, if  
the number of citations is considered, the positions would  
be reversed, with the text by Hernández Sampieri et al.  
being extremely higher with respect to all the others. In  
English, the three most cited books are Walliman's (2021),  
which occupies the eighth position; Bryman's (2016), which  
is in the fifth position; and Cohen et al. (2017), which is in  
the tenth position. In this case, the texts of Bryman and  
Cohen et al. have a close number of citations, but they are  
much higher than those of Walliman.  
Instead of dividing science into quantitative and  
qualitative research or proposing the holistic use of mixed  
methods, research designs are presented with relevant  
properties that characterize them and that can be used  
regardless of the approach.  
Most of the designs are collected from the sources  
referenced in the introduction (Bryman, 2016; Cohen et al.,  
2017; Hernández Sampieri et al., 2014), as well as from  
other research designs that exist in the literature.  
The methodological proposal is divided into 12 units  
of study. It begins with highly flexible research designs,  
such as qualitative design (1) and data science (2), which are  
more inductive in their approach.  
This is followed by designs more closely aligned with  
the realm of scientific publications, which include  
theoretical (3) and bibliographic (4) designs. Next are the  
methodological (5) and instrumental (6) designs that  
propose paths or tools for research.  
Then the quantitative designs themselves are  
addressed, namely those that are observational (7) and those  
that are experimental (8). Before concluding the proposal, a  
clarification is made on two types of designs that are  
difficult to classify: historical designs (10) and case studies  
(11). Finally, we return to a flexible perspective with mixed  
designs (12).  
These books present some differences that could  
generate confusion in researchers when offering the name of  
a
research design. Bryman exclusively highlights  
observational and experimental designs as research designs,  
while explaining the workings of the qualitative approach  
and mentioning techniques such as ethnography, interviews,  
virtual document analysis and focus groups. Cohen et al.  
similarly mention the previously mentioned designs, but  
also include systematic review and meta-analysis as  
research designs and refer to netnographic designs.  
Hernández-Sampieri et al., for their part, identify the  
quantitative research designs mentioned above, but also  
indicate qualitative designs and several mixed designs.  
However, this author does not point out theoretical designs,  
nor reviews, nor data science. It is risky to speak of a  
historical design, since there is still a debate as to whether it  
belongs to the qualitative, quantitative, or mixed approach,  
but Cohen points out strategies for its employment. In  
contrast, none of the books cited identifies theoretical,  
methodological, instrumental, and epidemiological designs  
This methodological proposal seeks to provide  
researchers with a variety of research designs to address  
problems of reality, allowing them to select those that best  
fit their needs and research objectives.  
PROPOSAL  
This section presents the proposal following the order  
proposed in the methodology, describing design by design  
and indicating when each one should be used. The  
enumeration of research designs, instead of being ordered  
according to the three research approaches (quantitative,  
qualitative, and mixed), proposes an alternative of starting  
with flexible qualitative research to gradually increase the  
rules and conditions required by the quantitative approach  
and, only after that, mixed designs are listed.  
(
although the latter is to be expected as it has specialized  
literature). In these sources, quantitative designs are always  
presented before qualitative designs. In view of this, it is  
necessary to develop an organization that resolves the  
designs starting from the most flexible to the least flexible,  
in an ascending order of control and complexity. It is  
important to bear in mind that these sources directly or  
indirectly identify the research designs that should be  
recognized, since, as will be seen in the proposal, they are  
not always declared as such.  
Based on the above, the present study proposes to  
organize the research designs according to the criterion of  
flexibility in the use of methodological research rules,  
starting from the most flexible (qualitative) to the least  
flexible (quantitative), but adding other designs that, due to  
their nature, are difficult to classify in this order.  
1
2
.
.
Qualitative: This is a general group that includes  
various qualitative research approaches.  
Data science: Different data analysis approaches  
used in research are listed, such as netnography,  
sentiment analysis, bibliometrics, big data, and  
others.  
3
4
5
.
.
.
Theoretical: Research designs based on the  
construction or development of theories.  
Bibliographic: Research designs that focus on the  
review and analysis of bibliographic sources.  
Methodological design: Research designs that  
involve the application of a specific methodology to  
address a research problem or question.  
METHODOLOGY  
The purpose of this article is to identify common  
research designs to facilitate decision making when  
researchers are faced with real-world problems. The  
methodological design is described, discussed, and  
organized in a didactic way so that the reader can judge its  
relevance.  
6. Instrumental: Research designs that make use of  
specific instruments or tools to collect data.  
7. Observational: Research designs in which the  
researcher observes and records phenomena as they  
occur in their natural environment.  
8. Experimental: Research designs in which variables  
are manipulated to establish causal relationships.  
https://doi.org/10.5281/zenodo.8050508  
40  
South American Research Journal, 3(1), 37-51  
https://www.sa-rj.net/  
9
.
Epidemiological: Research designs used in the field  
of epidemiology to study the distribution and  
determinants of disease in a population.  
identification of the different designs in the methodological  
proposal. In this regard, instead of focusing on a theoretical  
definition that can be expanded in the methodology books  
presented in Table 1, the design or group of designs is  
identified according to the researcher's need to adhere to an  
already developed research design. For each case, an  
example is given to illustrate processes carried out by  
researchers in various parts of the world to solve their  
research problems, or a combination of these. Figure 1  
illustrates the content of each of the groups of research  
designs.  
1
1
1
0. Historical: Research designs that focus on the study  
of past events and their influence on the present.  
1. Case: Research designs that focus on the study of  
individual or specific cases.  
2. Mixed: Research designs that combine qualitative  
and quantitative elements in their approach.  
This new organization, according to the author's criteria  
and experience, facilitates the understanding and  
Figure 1  
Resumen de la propuesta de organización de los diseños de investigación agrupados según su flexibilidad  
5
Methodological  
design  
1
Qualitative  
2 Data science  
3 Theoretical  
4 Bibliographic  
6 Instrumental  
Ethnographic,  
Netnography,  
Theoretical,  
Philosophical  
Traditional review,  
Systematic or  
systematized review,  
Meta-analysis  
 Review of existing or  Reliability and  
Phenomenological,  
Grounded Theory,  
Narrative,  
sentiment analysis,  
bibliometrics, big data,  
text mining, other  
new research proposals concordance,  
Confirmatory Factor  
Analysis, Exploratory  
Factor Analysis,  
Hermeneutical, Action  
Research  
Analysis of invariance.  
Other designs  
7
Observational  
8 Experimental  
9 Epidemiological  
10 Historical  
11 Case  
12 Mixed  
Cross-sectional  
Single-grouppretest-  
 Cohort, Case-control,  Historical,  
Case, Case Study, or  
Case Study Design  
Concurrent, Sequential  
descriptive, Relational posttestpretest,Single  
Case-control,  
Archaeological,  
Documentary  
or correlational,  
Explanatory or causal, pretest-posttestpretest,  
measurementcasestudy  
Ecological design,  
Prevalence, Incidence  
Longitudinal trend  
analysis, Longitudinal  
panel study  
Singlemeasurementcase  
studypretest-posttest  
quasiexperimental,  
Quasiexperimental,Time  
seriesortimeseries  
quasiexperimental,Two  
independentgroup  
experimental,Solomon  
experimental  
Note. The order from the most flexible to the least flexible only goes up to point 8. The epidemiological designs indicated are not included in the other designs  
indicated in this proposal, while clinical trials and community trials can be recognized as experimental designs. On the other hand, replications, reports,  
commentaries, letters, book summaries or essays have not been classified as designs due to the personalized nature that each author can offer.  
leading to synthesize an information or generate a new  
1
. Qualitative designs: When it is assumed that social  
theory (Charmaz, 2014). For example, the study conducted  
by Barandiarán Irastorza et al. (2022) shows that, by asking  
questions to politicians, officials, and organizations of a  
program, it proposes some key ideas to explain what moves  
to trust in collaborative governance in a community.  
Another widely used qualitative design is the narrative, in  
this case it is the life stories and memories of the participants  
that give an account of circumstances that allow a better  
understanding of a period. For example, the study on the  
human rights violations of a military operation through the  
narration of the victims (Mantilla Millán et al., 2022). A  
design used to interpret texts and images is hermeneutic, for  
example, Tomaylla Quispe and Gutiérrez Aguilar (2023) in  
their study interpreted the personal notebooks of the artist  
Nereida Apaza pointing out some characteristic aspects of a  
decade. Finally, the action research design not only tries to  
understand a reality out of scientific curiosity, but also  
assumes an active role to transform a reality, thus, when  
evaluating a process, the researcher is also considering his  
or her actions as part of a group (Bryman, 2016). For  
reality cannot be explained numerically or logically, but  
only by interpreting individual meanings, a qualitative  
design is used. If the purpose is to understand the  
particularities of small groups considering their cultural,  
linguistic, religious, origin, etc. context, an ethnographic  
design is used. For example, in a study on the mismatches  
between family and teachers' perceptions of parental  
involvement, the author (Alonso Carmona, 2021) recounts  
the points of view by quoting relevant statements, paying  
special attention to the culture of those involved. For its part,  
the phenomenological design attempts to reveal what  
individuals feel and think about a particular experience  
(
Hernández Sampieri et al., 2014). They are very useful for  
understanding those who have gone through painful  
processes such as a natural catastrophe, an illness, or the  
unexpected loss of someone (Palacios-Ceña and Corral  
Liria, 2010). Grounded theory is another qualitative design  
widely used to analyze social interactions, for which it  
identifies patterns that intertwine producing categories,  
https://doi.org/10.5281/zenodo.8050508  
41  
South American Research Journal, 3(1), 37-51  
https://www.sa-rj.net/  
example, a group of researchers in South India assessed the  
nutritional status of five families and found that most of the  
women suffered from anemia. To address this problem, the  
researchers engaged with the families and taught them  
organic farming and food preparation techniques to find  
practical solutions. This approach involved making  
modifications to the daily activities of the families.  
On the other hand, given the flexibility of the  
interpretive method, it is not surprising that some qualitative  
studies imitate quantitative studies in certain strategies. For  
example, a study conducted on 25 Argentine writers to  
compare their commercial perceptions over 20 years, in  
which, the author (Rimoldi, 2019), instead of employing a  
design with an already known name, decides to use the name  
longitudinal study which is very common among  
quantitative studies. There are other research designs of  
which examples are not developed such as semiotic and  
critical discourse analysis that are also part of the qualitative  
approach.  
published on Twitter. When you want to know what is most  
consumed in bibliographic terms, it is possible to apply a  
bibliometric design. This is the case of a study by Xu et al.  
(
2021) who studied 1,044 documents published in Web of  
Science, but since it is almost impossible to read them all,  
they used artificial intelligence to identify the most  
outstanding characteristics of the literature on  
entrepreneurship and crises over 36 years. Data science can  
be very useful to study a wide range of behaviors such as  
marketing, biology, psychology, language, sociology,  
among others. The sample sizes in these cases have no  
limits, however, the designs depend on the strategies used to  
collect information, because once structured data are  
available, the analysis is performed according to statistical  
rules. Indeed, when databases are structured, many  
researchers prefer to declare that they have used the big data  
design which, apart from variety, speed, and veracity, is  
finally subject to statistical analysis.  
3
. Theoretical designs: When there are no general  
In the choice of sample size in qualitative research  
designs, a precise value cannot be determined, since it  
depends on the research objectives, unless it is desired to  
control for error. However, it is suggested to use theoretical  
saturation as a guide to know when to stop, i.e., when  
participants no longer contribute new information about the  
problem. This allows informed sample size decisions to be  
made based on theoretical completeness rather than  
statistical criteria.  
principles to explain the phenomena or when a reflection  
and adjustment of existing principles is required. Borsboom  
et al. (2004) proposed an interesting methodology for theory  
building. Although the designation as a specific design is  
proposed by the author, it is possible to include  
philosophical approaches in this design, since both focus on  
the analysis of fundamental postulates of a theory.  
Moreover, in both cases empirical evidence can be  
dispensed with. Theoretical design does not contain strict  
rules, since it is often dressed in essayistic styles, but what  
cannot be lacking are written assertions in the form of  
reasoning that, in the best of cases, can be identified as  
axiomatic propositions, or simply as hypotheses, theoretical  
propositions or logical inferences of one or several  
disciplines. Theoretical design formulates relevant concepts  
that explain how reality works. For example, cognitive  
theory, feminist theory, evolutionary theory, the standard  
model of particle physics, neoclassical microeconomics,  
and so on. The principles of these theories guide research  
and their validity will depend on their compatibility with  
empirical evidence; therefore, proposals of this nature are  
fundamental to guide the hypothetico-deductive  
methodology that will devise ways to test hypotheses  
2
.
Data science: When working from an  
interdisciplinary perspective in which computer science is  
combined with statistics, not only to analyze information but  
also to collect it, data science is employed. This is a  
booming field for which there is little philosophy and  
theorizing, however, some particularities can be identified  
that could lead to specific research designs. For example,  
when a qualitative database is very large, it is impossible to  
interpret each of the collected data (interviews, texts,  
images, network data, multimedia data), so it becomes  
inevitable to transform them into quantitative data. This  
transformation is done with pattern recognition techniques  
using coding (like grounded theory design) that can be  
replicated by computers using artificial intelligence (Bryant  
and Charmaz, 2019). When a researcher wants to understand  
the interaction behavior in social networks on the Internet,  
the content of web pages, online interviews, or blogs,  
obtained through application programming interfaces  
(
Bunge, 2005). Contrary evidence may lead to adjustments  
in the theory or to its discrediting. While it is true that  
theoretical designs are used to develop theories that explain  
reality, not all theoretical designs formulate relevant  
concepts that can be empirically verified. Some may be  
more focused on the elaboration of mathematical or logical  
models within a formal science that are not compatible with  
verification.  
(
APIs), he or she can resort to a netnographic design whose  
name is an acronym of "net" with "ethnography" (Jeacle,  
021). For example, two researchers set out to analyze  
2
insecurity in some Mexican cities through what was  
published in the digital press between 2010 and 2019 by  
collecting certain predominant terms in newspaper articles  
4
. Bibliographic designs: When there is an abundant  
scientific production that needs to be synthesized to draw  
the most general conclusions, bibliographic designs are  
used. The bibliographic design is not carried out by means  
of direct empirical evidence, but its units of analysis are  
scientific publications (Petticrew and Roberts, 2008). If the  
way this review is conducted is neither methodical nor  
transparent, it is considered a traditional review (or non-  
systematic review). But if it is reliably identified by  
(
Soto-Canales and Padilla-Herrera, 2023). Another  
interesting example is that carried out by Ceron et al. (2016)  
who have made ex ante electoral forecasts with an error  
level not far from the electoral trend polls, for which they  
employ sentiment analysis, text mining, big data, supervised  
machine learning and the use of algorithms to identify  
patterns and trends in hundreds of thousands of microblogs  
https://doi.org/10.5281/zenodo.8050508  
42  
South American Research Journal, 3(1), 37-51  
https://www.sa-rj.net/  
establishing a time frame, inclusion and exclusion criteria,  
and a systematic search using strings or formulas and  
evaluations of the information collected are performed, it  
can be said to be a systematic or systematized review  
beings for which they have created a new instrument, the  
High Five Inventory, whose construct has been validated by  
confirmatory factor analysis (CFA) and internal consistency.  
But not only are tools being built, but they are also being  
adapted. For example, an adaptation of an instrument to  
assess metacognition in a cultural context different from the  
one originally proposed (Zhunio-Falcones and Cabrera-  
Tenecela, 2022). Another example is the reconfiguration and  
creation of a short version of a tool to measure work ethics  
that was originally extensive (Zúñiga et al., 2022).  
Statisticians usually classify CFA among explanatory  
designs; however, the goal of instrumental designs is not to  
explain the causes of things but to ensure the quality of the  
measurements. In these cases, it is advisable to have samples  
of at least 200 data or at least 10 observations for each  
question (item) to facilitate model fitting (Hair et al., 2010).  
When working with ordinal or categorical variables, there  
are often problems of multivariate normality, so there are  
estimation techniques such as robust maximum likelihood  
(MLR), unweighted least squares (ULS), diagonally  
weighted least squares (DWLS), among others, which use  
polychoric correlations and are available in free platforms  
such as R or Python. However, instead of using Cronbach's  
alpha, McDonalds' omega can be used to verify internal  
concordance. The possibilities of this design are broad  
because, in addition to validating in a population, factorial  
invariance evaluations can be performed to verify if the  
instrument is not biased in any subgroup, as well as to  
compare with other instruments to test concurrent or  
discriminant validity. If the study is very new, it is advisable  
to start by designing a good instrument by means of an  
exploratory factor analysis (EFA), which will be discussed  
in one of the observational designs.  
7. Observational designs: When the aim is to learn  
about behavior without manipulating reality, the  
observational design, also known as non-experimental, is  
used (Campbell and Stanley, 2015). If the information is  
collected on a single occasion, the design is known as cross-  
sectional, in which case the designs can be specified as  
exploratory, descriptive, relational, and explanatory. If the  
problem is new and there is little state of the art (or the  
researcher does not agree with the measures used in the state  
of the art), it is necessary to develop an exploratory design.  
For example, a researcher wanted to measure blended  
learning in higher education, but the variables to be assessed  
were not clear. He invented an instrument and tested it on a  
group of 413 teachers. In addition, he conducted an  
exploratory factor analysis (Anthony Jr., 2022). Exploratory  
designs should not be conceived for their level of difficulty  
because they require a great deal of creativity to understand  
the problem and devise solutions without sufficient  
information, for this reason, the exploration can be carried  
out with simple descriptive statistical models up to complex  
analytical models. The descriptive cross-sectional design is  
one of the most used designs to present its results in  
(
Codina, 2018). For example, in the article 'Bibliographic  
review of control systems for micro-grid energy  
management' by Sampietro Saquicela and Pico-Valencia  
(
2018) or the one conducted on studies of electoral  
forecasting through big data (Cabrera-Tenecela, 2021) or  
through surveys (Andrade-Bayona, 2021). Generally,  
systematic reviews are limited to describing this  
information; however, when the sample is considerable,  
more advanced statistical techniques can be used to explain  
what may be occurring with respect to a theory. This type of  
design is no longer known simply as a systematic review,  
but as a meta-analysis (sometimes both terms are used)  
(
Codina, 2018). For example: Effect of the low-calorie  
ketogenic diet on body composition in overweight and obese  
adults: systematic review and meta-analysis (Díaz Muñoz et  
al., 2021). Note the similarity of this design to the  
bibliometric design described in data science.  
5
. Methodological designs: When existing methods  
are insufficient or when new procedures have been  
discovered to address a research problem, methodological  
designs are used, which can be found as innovative  
methodological design or research design with new  
methods. These designs involve a systematic and organized  
approach to gathering information and analyzing the data  
collected (Ezzy, 2002). Research designs guide the way in  
which information can be effectively obtained or processed.  
There are methodological designs as open-ended as the  
present case, as well as very specific designs that show step-  
by-step how to download information from Twitter APIs to  
process it through algorithms in the R programming  
language to finally provide a route to perform ex ante  
election forecasts without surveys (Ceron et al., 2016).  
Another example of methodological design could be to  
generate new software to select study samples attending to  
the statistical power of the tests to be used to contrast  
hypotheses (Faul et al., 2007). When it is not clear how to  
proceed, it is important to review a methodological design  
before committing to the objectives of a research study.  
2
6
. Instrumental designs : When existing observation  
instruments are insufficient, artifacts, tests, questionnaires,  
observation sheets, etc. are created or adapted with the  
instrumental design (Carretero-Dios, 2007). This is used in  
both mechanical and behavioral processes in living beings  
(
including humans). In the mechanical case applied to oral  
health, for example, both an engineer and a health researcher  
can test whether a 3D scanner is reliable, concordant,  
accurate and valid before using it for intraoral  
measurements, as shown in the study by Soto-Alvarez et al.  
Another example, two psychologists (Cosentino and Castro  
Solano, 2017), instead of focusing on pathological aspects  
want to focus on emotionally positive aspects of human  
2
Instrumental design for validation and reliability, as in the present case,  
should not be confused with instrumental variables used to solve  
endogeneity problems.  
https://doi.org/10.5281/zenodo.8050508  
43  
South American Research Journal, 3(1), 37-51  
https://www.sa-rj.net/  
percentages, measures of central tendency and variability  
without establishing probabilistic relationships between  
variables. An example can be the pathological description  
made by a group of researchers to the testes of 11 fatal cases  
of Covid-19 (Duarte-Neto et al., 2022). Another example is  
the description of genital tract infections in a group of  
women attending obstetric consultation (Loachamin, 2023).  
The samples in this design can be as small as the previous  
example to as large as the results of a national census. When  
the researcher has an acceptable sample (with a statistical  
power of at least 80%), relational hypotheses can be  
established. To carry out this process, a relational design,  
also known as a correlational design, is used. It is important  
to note that the term "relational" refers to the connection or  
association between variables, and should not be confused  
with the correlation coefficient, which is a specific measure  
of the relationship between two variables. Within the  
intervention, in 287 industries in Nepal. An important  
reflection before closing this section is that, although some  
philosophers of science, such as Pearl (2012), consider that  
observational methods serve to model causality, as is the  
case of those who point out that an SEM model infers the  
underlying causal relationships (and not only correlations),  
most researchers avoid using the name explanatory or causal  
design because they are aware that the level of control of an  
observational design is not always sufficient to provide a  
conclusive explanation, even more so when dealing with  
low predictive levels, common in the social sciences. For  
this reason, social scientists often state that their study is  
relational or correlational, however, when researchers seek  
to demonstrate causality, they can add more control through  
longitudinal designs.  
Finally, within the observational designs is the  
longitudinal design. This is like the previous ones, but with  
a difference: there are several measurements over time to  
several samples over time, to different age groups or to the  
same sample on several occasions. When one wants to know  
the changes in a population by working with different time  
samples, the trend design is used. For example, a study  
conducted in Brazil at four points in time (waves) showed  
that fear of crime is positively associated with support for  
less democratic forms of government (Pereira and de  
Andrade Dornelles, 2021). When studies are conducted to  
know the evolution according to age, the cohort, group  
evolution or accelerated longitudinal design is used. An  
example of this is the study conducted on 2,278 children  
from 4 to 14 years of age, which showed that there is a  
significant relationship between sports participation and  
social competence (social skills), especially in late  
childhood and early adolescence (Bedard et al., 2020).  
Finally, when the same sample is evaluated over time, on the  
other hand, it is called a panel design. An example of such a  
study is the one conducted on 396 Filipino adolescents  
through a three-wave panel structural equation model, with  
which the researchers demonstrated the association between  
the valuation of happiness and positive affect (Datu et al.,  
2021). Longitudinal designs control error and bias better  
than cross-sectional designs, however, they tend to be more  
costly and time-consuming. While it is true that the models  
used tend to employ statistics like explanatory designs, they  
do not have the naming conflict.  
"
relational design", a term that the author prefers to use,  
various statistical testing techniques can be used to make  
comparisons between groups and analyze the association  
between variables (correlation is just one of them). An  
example of this design is the one used by Kuru Alici and  
Ozturk Copur (2022) who measured anxiety and fear of  
Covid-19 in 234 undergraduate nursing students showing  
that these two variables were highly correlated. Up to this  
point, it is worth mentioning a characteristic of exploratory,  
descriptive, and relational observational designs: in their  
ultimate objectives they use independent variables because  
they are not concerned with measuring the dependence or  
causality of one variable on another. However, studies are  
often found that claim that their design is relational when  
they incur in causality, which, as will be seen below, may  
occur due to modesty, fear, or ignorance of explanatory  
designs.  
When researchers attempt to model dependence on one  
or more independent variables, they refer to explanatory or  
causal designs (erroneously classified as correlational-  
causal). These designs usually make use of linear, ordinal or  
logistic regressions to establish the level of explanation of  
the independent variables with respect to the dependent  
variables. There is a wide variety of statistical models in this  
respect, such as multivariate regression, multivariate  
regression, multilevel analysis, confirmatory factor  
analysis, among others. One of the most useful is the use of  
structural equation modeling (SEM), which allows complex  
information to be modeled. A good example is the study by  
Kakemam et al. (2022) who determined how  
professionalism and systems thinking explain the safety  
competence of 358 nurses caring for Iranian patients. While  
it is true in their design, they modestly point out that their  
design is a cross-sectional survey (which would be a part of  
the design), statistically they cannot avoid writing the  
explanatory level of their model in terms of regression. An  
example opposite to the previous one, in which they use the  
name explanatory design without hesitation, indeed they  
combine it with the exploratory design, is that of  
Rajbhandari et al. (2022) who examined the relationship of  
some variables, including skilled labor, with respect to  
technological innovation, mediated by government  
8. Experimental designs: When the researcher  
intentionally manipulates variables to control the internal  
and external validity of his results, he employs the  
experimental design. For Campbell and Stanley (2015), if  
the researcher only has a group of participants in which the  
design intervenes, it can be called pre-experimental. Within  
this design the most common is the pre-test and post-test of  
a single group. For example, researchers at an institute of  
medical sciences tested a self-instruction module on  
parental drug administration in 50 nurses, achieving an  
increase from 64% (pre-test) to 88% (post-test) of  
appropriate practices. Pre-experimental designs are also  
considered to be those that apply only a post-test, this would  
be the case study with a single measurement or the  
comparison with a static group, in both cases, the control is  
https://doi.org/10.5281/zenodo.8050508  
44  
South American Research Journal, 3(1), 37-51  
https://www.sa-rj.net/  
minimal because there is no pre-test, so it is impossible to  
evaluate the differences (Jaan et al., 2022).  
educational in nature and students may be biased by  
receiving a pretest, two more groups (one intervention and  
one control) are added to the above design in which the  
pretest is not applied, but the posttest is retained in all of  
them, and is referred to as the Solomon design. An example  
of such a study was developed by Golaki et al. (2022) to test  
knowledge retention by employing the inverted classroom.  
For this purpose, four Solomon groups were randomly  
assigned, a pre-test was administered to an intervention  
group and a control group, and then all four groups received  
When working with groups that were formed prior to  
the researcher's intervention, pre-testing and post-testing are  
performed, a quasi-experimental design is used. One of the  
most used quasi-experimental designs is when the pretest  
and posttest are used in an intervention group and in a  
control group, this is called a separate sample design in  
pretest and posttest in intact groups, which are also known  
as non-equivalent control groups (Cohen et al., 2017). For  
example, at one university they wanted to provide better  
mentoring to culturally and linguistically diverse students,  
for which they designed a blended program and compared  
mentoring competencies before and after the training to an  
intervened group of 49 students who received the training  
including an additional component and a non-intervened  
one of 62 students who only received the training  
a
follow-up post-test of knowledge retention. The  
intervention groups used the inverted class, and the control  
groups the conventional class, however, when evaluating the  
results two months after the treatment and comparing the  
results with the pre-test, as well as with the control, there  
was no significant increase in the test. There are other  
designs such as A-B-A-B that collect baseline information,  
implement the treatment, and evaluate its effects, and then  
re-evaluate the return to baseline by withdrawing the  
treatment and then reapplying it to measure the changes.  
Another design encountered is the factorial design, but it  
refers more to the statistical technique that can be used  
interchangeably in various designs. The samples of the  
experimental designs usually vary as they can be small as  
well as large, being advisable to identify the statistical  
power of at least 80% for the statistical tests that are  
intended to be performed.  
9. Epidemiological designs: When you want to study  
public health behavior in a population, the epidemiological  
design is used. Different designs mentioned above can be  
used to describe or analyze reality. The most common  
designs in epidemiology are the prevalence design and the  
incidence design, which make it possible to examine the  
frequency of a disease in a population at a given time or  
during a given period. In addition, epidemiology also  
employs other specific designs that are not commonly used  
in other fields, which are relevant and deserve to be  
mentioned in this section. If the researcher has access to  
information that summarizes the behavior of one or more  
populations (and cannot directly access data from  
individuals), he or she can make use of the ecological  
(sometimes also called cluster) design (Cataldo et al., 2019).  
For example, one researcher conducted an analysis of  
Covid-19 mortality in 30 countries by taking data from the  
Our World in Data organization from the time the first case  
appeared until two years later and demonstrated the impact  
that vaccination had had on reducing such mortality (L. M.  
Cabrera-Tenecela and Macancela-Sacoto, 2022). When  
there is direct information on individuals (whether  
retrospective or prospective) and it is desired to compare  
those who present a disease with those who do not, the case-  
control design is used. This design uses a type of categorical  
statistic to separate those who present certain health  
conditions (with which the level of risk posed by certain  
characteristics can be studied) from those who do not  
present those health conditions. For example, a study on  
risk factors for child pregnancy conducted among 180  
adolescents showed that those who were victims of domestic  
violence were 6 times more likely to become pregnant than  
(
Oikarainen et al., 2022). Another quasi-experimental  
design is that of time series or time series that consists of  
making observations at different moments over time to the  
same study units, in which natural or artificial events can  
occur that can affect the behavior of the variables being  
evaluated every so often (daily, monthly, quarterly, etc.). A  
good example is the study by Chiatchoua et al. (2020) who  
studied  
some  
econometric  
indicators,  
including  
governmental economic intervention, before and after  
Covid-19 in Mexico, managed to calculate the effect of the  
pandemic on the economy as well as to propose a forecast  
with the ARIMA model. The design of the time series is  
debatable if it belongs to longitudinal studies, however, as it  
studies the impact that certain events have, they are  
regularly identified as quasi-experiments. Although less  
common, there is a quasi-experimental design with a  
separate pretest/posttest sample that compares a group that  
has been previously evaluated but not intervened with one  
that has been intervened and evaluated only afterwards. A  
study that is intended to be a pure experiment, but fails to  
meet the control, can be reduced to a quasi-experimental or  
pre-experimental study.  
Finally, when a researcher randomly groups the  
samples to ensure that the groups evaluated are equivalent,  
the pure experiment is chosen. In this case, the most used  
experimental design is the two independent groups  
experimental design or also known as control group with  
pre- and post-test. For example, a study that tested a vaccine  
for Covid-19 worked with 450 individuals, convalescing  
from the disease, who were randomly assigned to two  
groups, one experimental (n=344) and one control (n=86)  
and was able to demonstrate that the dose applied safely  
reinforced the pre-existing natural immunity (Ochoa-Azze  
et al., 2022). Another interesting example was applied to  
online gamblers to assess their behaviors when betting on  
soccer or online roulette games, who were given a monetary  
endowment warning them that the excess would be for them.  
In this case the intervention group (n=254) received colored  
warnings about the safety of the game and the control group  
(
n=252) did not receive such warnings. However, the  
protective effect of the safer play message was not tested (de  
Vries et al., 2022). Sometimes when the intervention is  
https://doi.org/10.5281/zenodo.8050508  
45  
South American Research Journal, 3(1), 37-51  
https://www.sa-rj.net/  
those who had not been victims (Castañeda Paredes and  
Santa-Cruz-Espinoza, 2021). Another example may be the  
comparison of dopamine production between cannabis-  
using students and non-using students (Acuff et al., 2023).  
These types of studies are not limited to presenting the  
results in a descriptive way, but often use biostatistics to  
model the information using bivariate or multivariate  
inferential techniques.  
opts for the mixed design. These designs have the possibility  
of combining all the designs they consider pertinent, and can  
be exploratory, descriptive, relational or explanatory. Let us  
consider an example. A study related to adherence to  
antiretroviral treatment in 86 women with HIV used a mixed  
quantitative and qualitative method. This study started with  
an explanatory design in which they contrasted variables  
such as age, educational level, and income to explain  
adherence to treatment. They then used the  
phenomenological (qualitative) design, only in women who  
did not adhere to treatment to find out why they did not  
adhere. If the researcher employs one design in order to then  
employ the other, as in the present case, the design is  
sequential, it is clear that the first design is an explanatory  
one and the second is a phenomenological one, in which  
case, the name usually given is sequential explanatory  
mixed. Let us look at another example in which neither  
method depends on the other to exist, i.e., the application of  
one design or the other is independent. In a poor urban  
district, several methods were combined to promote health  
literacy, empowerment, citizen participation and  
intersectoral collaboration. To this end, de Jong et al. (2019)  
provided evidence regarding the application of health  
literacy questionnaires, documentary, and photographic  
analysis, as well as, interviews, to answer four research  
questions. As the qualitative design work independently,  
this design could be called concurrent mixed action  
research-action research, while other authors would prefer  
to call it concurrent transformative mixed, however, the  
authors of the cited article have preferred to call it action  
research-guided mixed methods. There are also authors who  
would call the first example QUAN-which, due to the  
importance of the quantitative method, while the second  
would call it QUAL-which, also due to the importance of  
the qualitative method. However, in view of the very wide  
possibilities of naming a design, and the impractical options  
offered by methodologists, it is preferable to indicate  
whether the design is mixed sequential or concurrent and  
then, as in our second example, to mention the designs  
traditionally used, as this would offer greater precision to  
the reader.  
1
0. Historical designs: When seeking to investigate  
past events and write or rewrite history, use is made of  
historical design, which is based on the analysis of  
secondary sources and primary documents (Bloch, 2018).  
Boch suggested that historian must involve other disciplines  
but that the historian's interpretation is fundamental. This  
interpretation can be flexible and open according to the  
principles of hermeneutics, or it can be rigorous and logical,  
even statistical-inferential, depending on the approach taken  
by the historian. For example, the work of Vásquez Ruiz  
(
2014) is an interpretive study that analyzes the uprising that  
occurred in 1932 in El Salvador. Although the black legend  
had been spread that radical communists were responsible,  
the author reviews the contribution of other groups in that  
anti-government rebellion. Another example is the work of  
Carretero Poblete and Samaniego Erazo (2017), which is  
based on primary archaeological sources to explain the  
Puruhá culture's trade relations with the Cañari and the  
Coast through the careful analysis of 2,198 pieces, including  
ceramics, lithics and bones belonging to the late Late  
Formative phases of the Ecuadorian Central Highlands. This  
study could be considered an archaeological design.  
Another historical design is the documentary design, which  
involves the analysis of past records. Although these  
historical designs are not well known, those who engage in  
them agree that a triangulation of different sources and the  
comparison of multiple perspectives are required to  
approach the validity and reliability of the results.  
11. Case designs: When one wants to offer a detailed  
and exhaustive analysis of one or some cases with the aim  
of understanding a fact, event or problem, the case design,  
case study, or case study is used (Cohen et al., 2017). Popov  
et al. (2019) made a study of four canine patients in the  
recovery of bone defects after resection of osteosarcomas,  
in their study they provide a detailed review of the process  
employed by them to conclude that all operated animals  
began to actively use their restored limbs and showed good  
functional results. According to Yin (2017) case studies are  
like experimental studies in that they argue how it was done  
and why it was done, unlike observational studies where it  
is difficult if not impossible to answer. While case studies  
tend to have small samples, this is due to their in-depth and  
comprehensive approach to a specific case, which allows for  
a detailed and contextualized understanding of the event  
under study. Through rigorous and systematic analysis, case  
studies seek to provide solid evidence that, through broader  
studies, can be made generalizable.  
DISCUSSION  
The qualitative approach provides a solid basis for the  
organization of research designs, as its flexibility allows for  
a more accessible methodological understanding. As  
constraints and levels of complexity are added to designs, a  
gradual increase in the quantitative approach can be seen.  
While it is true that qualitative designs require experience  
and disciplinary training (designs are minimalist and  
flexible and gradually adapt to the context according to  
Bisquerra Alzina et al., 2019), their ability to make decisions  
in a flexible manner is remarkable and contrasts with the  
rigidity inherent in the quantitative approach. The adoption  
of this initial organization based on the qualitative approach  
improves the overall understanding of research designs,  
1
2. Mixed designs: When the researcher considers  
that the hypothetico-deductive method or the interpretative  
method is insufficient and assumes that in the combination  
of the two there is a better solution to his problem, then he  
https://doi.org/10.5281/zenodo.8050508  
46  
South American Research Journal, 3(1), 37-51  
https://www.sa-rj.net/  
allowing a more effective approach to methodological  
aspects. This order has not been considered by Hernández  
Sampieri or by the other methodologists mentioned above.  
Interesting techniques have emerged from these  
designs, which today can be worked on by means of data  
science. On the other hand, although it is true that theoretical  
and philosophical designs are characterized only by stating  
the principles guiding the research, and their validity  
depends on their compatibility with empirical evidence,  
bibliographic studies are a channel for verifying whether the  
hypotheses derived from these theories are plausible, as  
Popper would say. However, even though Bryman, Cohen et  
al. (2017) and Hernández-Sampieri et al. (2014) make  
suggestions on how to structure theoretical frameworks and  
states of the art, they do not recognize that research designs  
of this nature exist, as has been done in the present case.  
This aspect has been worked on by Borsboom et al. (2004)  
who suggest the use of certain rules to design theories to  
guide research and scientific practice. Of course, the  
structuring of theories is a problem widely studied by  
epistemology (Popper, 2008; Popper et al., 2008), a branch  
of philosophy that discusses the importance of the  
structuring of theories and how it relates to the acquisition  
of scientific knowledge.  
designs stand out or are equivalently combined. In any case,  
the choice of mixed design should be guided by the specific  
needs of the study. Whatever the designation used, it is  
essential that investigators provide a clear and detailed  
description of the methods used in the mixed design. This  
will ensure methodological transparency and allow readers  
to assess the validity and reliability of the results.  
One of the most revealing findings of this study is the  
tendency of many researchers to confuse data collection or  
analysis techniques and instruments with the research  
designs themselves. For example, the structured  
questionnaire design (instrument) or the confirmatory factor  
analysis design (statistical technique) are mentioned as if  
they were designs in themselves. In the context of  
methodological design studies, it is crucial to address this  
aspect, otherwise any resource could be misinterpreted as a  
research design. To avoid this confusion, it is essential to  
understand that tools and statistics are tools that are at the  
service of research designs, not the other way around. Each  
research project should make clear the scope and  
limitations, emphasizing the importance of using techniques  
and instruments appropriately within a sound research  
design.  
Finally, it is important to reiterate the importance of  
organizing and classifying research designs, since, at the  
time of publication, journal editors, guided by systems such  
as APA or Vancouver, seek to be as clear as possible about  
the method adopted by the researcher. In this sense, a  
methodology that does not contain research designs would  
only reflect epistemologically on the approach adopted or  
confuse it with logistical elements of the research, such as  
tools or techniques for information analysis.  
Limitation. This study offers an approach to research  
designs, but it is important to emphasize that it is not  
intended to be exhaustive in its coverage. Rather, it is  
presented as an overview of the most consulted  
methodological sources, especially in the social sciences. In  
the future, it would be advisable to develop an  
interconnected structure of research designs, employing a  
broader coding process that considers the specific purposes  
of each, particularly as they relate to the health sciences. In  
this way, a fuller and deeper understanding of the different  
approaches and methodological designs used in research  
could be achieved.  
Authors who have published the most influential  
recent works in research methodology, in terms of citations,  
cannot ignore the important work of Campbell and Stanley  
(
1963), who published experimental and quasi-experimental  
designs in social research. These authors present a range of  
research designs that allow causal relationships to be  
established and address the challenges of conducting  
experiments in uncontrolled settings. The authors discuss  
key concepts, such as randomization, control of extraneous  
variables, and internal and external validity, that are  
fundamental to establishing reliable conclusions in  
empirical research.  
It is interesting to note that historical designs are not  
widely mentioned in the most cited works. Although history  
and archaeology are disciplines with very particular  
methods, it is increasingly evident that, through  
interdisciplinary approaches, these should be considered  
and included in classifications of research designs in science  
in general. Historical research provides a unique perspective  
to the study of past events and their influence on the present,  
which can enrich and complement other forms of research.  
It is important to foster a broader dialogue and recognition  
of historical designs within the scientific community to  
embrace the diversity of methodological approaches more  
fully to research.  
CONCLUSION  
Finally, regarding mixed designs, Hernández-Sampieri  
summarizes the ideas of Creswell and Creswell (2017) to  
mention eight research designs. However, when looking for  
examples, there is no such abundance of designs. Most  
researchers prefer to note whether it is a concurrent or  
sequential design. In the face of the great confusion that may  
be involved in combining research designs such as those  
proposed by the above researchers, to avoid ambiguous or  
subjective labels, it is preferable to specify whether the  
design is sequential or concurrent and then mention which  
This article has presented various research designs  
grouped into 12 categories, showing the wide range of  
approaches used by researchers in the social sciences and  
health sciences. These designs go beyond mere observation  
and experimentation, including also theoretical,  
bibliographical, and instrumental study.  
An original contribution of this proposal is the didactic  
organization of designs from the most flexible to the least  
https://doi.org/10.5281/zenodo.8050508  
47  
South American Research Journal, 3(1), 37-51  
https://www.sa-rj.net/  
flexible up to eight levels, an approach that has not been  
previously explored in the methodological literature. It is  
essential that researchers become familiar with these  
different designs and understand their applications and  
limitations. Choosing the appropriate design is crucial to  
effectively address research problems and obtain valid and  
reliable results.  
It is also important to emphasize the need to provide a  
clear description of the techniques used in each design,  
avoiding confusion between the tools and statistics  
employed. It should be recognized that these statistical tools  
and methods are at the service of the research designs, and  
not the other way around.  
chrome-  
extension://efaidnbmnnnibpcajpcglclefindmkaj/https://x  
xicoruna.sergas.gal/DInnovacion/38/Curso%20metodol  
og%C3%ADa%203%20-  
%
20An%C3%A1lisis%20con%20SPSS.pdf  
Barandiarán Irastorza, X., Canel Crespo, M. J., & Bouckaert, G.  
(2022). ¿Qué mueve a confiar en la gobernanza  
colaborativa? Análisis de un programa gubernamental  
en el País Vasco. [What drives reliance on collaborative  
governance? Analysis of a government program in the  
Basque Country.]. Revista española de ciencia política,  
60, 251-275.  
Bedard, C., Hanna, S., & Cairney, J. (2020). A Longitudinal  
Study of Sport Participation and Perceived Social  
Competence in Youth. Journal of Adolescent Health,  
6
6(3), 352-359.  
In short, this study highlights the importance of  
understanding and applying the various research designs  
available, considering their characteristics, scope and  
limitations. This understanding will enable researchers to  
address their research questions and contribute to the  
advancement of knowledge in their respective disciplines  
more effectively.  
https://doi.org/10.1016/j.jadohealth.2019.09.017  
Bisquerra Alzina, R., Dorio Alcaraz, I., Gómez Alonso, J.,  
Latorre Beltrán, A., Martínez Olmo, F., Massot Lafón,  
I., Mateo Andrés, J., Sabariego Puig, M., Sans Martin,  
T., Torrado-Fonseca, M., & Vilá Baños, R. (2019).  
Metodología de la investigación educativa (Sexta)  
[
Educational Research Methodology (Sixth)]. La  
Muralla.  
Bloch, M. (2018). Apología para la historia o el oficio del  
historiador.  
Borsboom, D., Mellenbergh, G. J., & van Heerden, J. (2004). The  
Concept of Validity. - PsycNET. Psychological Review,  
BIBLIOGRAFÍA  
Abril, J. C., & Abril, M. de las M. (2021). Cinco preguntas para  
precautelar la honestidad estadística en la sociedad  
actual [Five questions to safeguard statistical honesty in  
today's society]. South American Research Journal,  
1
11(4).  
https://psycnet.apa.org/doiLanding?doi=10.1037%2F00  
3-295X.111.4.1061  
3
1
(1), 5-9. https://doi.org/10.5281/zenodo.4885414  
Bryant, A., & Charmaz, K. (2019). The SAGE Handbook of  
Current Developments in Grounded Theory. SAGE.  
Bryman, A. (2016). Social Research Methods. Oxford University  
Press.  
Bunge, M. (1983). Speculation: Wild and sound. New Ideas in  
Psychology, 1(1), 3-6. https://doi.org/10.1016/0732-  
Acuff, S. F., Simon, N. W., & Murphy, J. G. (2023). Effort-  
related decision making and cannabis use among  
college students. Experimental and Clinical  
Psychopharmacology, 31, 228-237.  
https://doi.org/10.1037/pha0000544  
Alonso Carmona, C. (2021). Desajustes entre las percepciones  
familiares y docentes sobre la implicación parental. Un  
estudio etnográfico en la educación secundaria  
obligatoria [Mismatches between family and teacher  
perceptions of parental involvement. An ethnographic  
study in compulsory secondary education.]. RECERCA.  
Revista de Pensament i Anàlisi, 26(2), Article 2.  
https://doi.org/10.6035/recerca.5750  
1
18X(83)90024-7  
Bunge, M. (2005). La ciencia, su método y su filosofía [Science,  
its method and philosophy]. Debolsillo.  
Busetto, L., Wick, W., & Gumbinger, C. (2020). How to use and  
assess qualitative research methods. Neurological  
Research and Practice, 2(1), 14.  
https://doi.org/10.1186/s42466-020-00059-z  
Cabrera-Tenecela, L. M., & Macancela-Sacoto, G. M. (2022).  
Impacto de la vacunación en la reducción de la  
mortalidad diaria durante la pandemia covid-19 [Impact  
of vaccination on reducing daily mortality during the  
covid-19 pandemic.]. South American Research  
Journal, 2(1), 27-32. https://zenodo.org/record/6763486  
Cabrera-Tenecela, P. (2021). Revisión bibliográfica del  
pronóstico electoral a través del big data [Bibliographic  
review of electoral forecasting through big data]. South  
American Research Journal, 1(2), 27-35.  
Andrade-Bayona, C. (2021). Técnicas para la realización de  
pronósticos electorales más precisos [Techniques for  
more accurate election forecasts]. South American  
Research Journal, 1(2), 37-43.  
https://doi.org/10.5281/zenodo.6383377  
Anthony Jnr., B. (2022). An exploratory study on academic staff  
perception towards blended learning in higher  
education. Education and Information Technologies,  
2
7(3), 3107-3133. https://doi.org/10.1007/s10639-021-  
1
0705-x  
https://doi.org/10.5281/zenodo.6383385  
Aparna Meenakshi, K. g, Athira Krishnan, L., Gayathri, K. V., &  
Sithara Balan, V. (2019). Improving Food and  
Nutritional Security of Rural Women: Action Study.  
Indian Journal of Extension Education, 55(2), 97-100.  
Arias Gonzáles, J. L., & Covinos Gallardo, M. (2021). Diseño y  
metodología de la investigación [Research design and  
methodology]. Enfoques Consulting TING EIRL.  
chrome-  
Campbell, D. T., & Stanley, J. C. (2015). Experimental and  
Quasi-Experimental Designs for Research. Ravenio  
Books.  
Cárdenas Castro, M. (2009). Métodos de investigación social. En  
P. Salinas Meruane y M Cárdenas Castro. (Ed.),  
Métodos de investigación social [Social research  
methods] (Segunda, pp. 83-98). Ediciones CIESPAL.  
Carretero Poblete, P. A., & Samaniego Erazo, W. M. (2017).  
Prospección arqueológica en el sitio Puruhá de Collay,  
Riobamba, Ecuador [Archaeological prospection at the  
Puruhá de Collay site, Riobamba, Ecuador.].  
extension://efaidnbmnnnibpcajpcglclefindmkaj/https://g  
c.scalahed.com/recursos/files/r161r/w26022w/Arias_S2  
.
pdf  
Association, A. P. (2019). Publication Manual of the American  
Psychological Association: 7th Edition, Official, 2020  
Copyright.  
Arqueología Iberoamericana, 9(33), 18-26.  
Carretero-Dios, H. (2007). Normas para el desarrollo y revisión  
de estudios instrumentales: Consideraciones sobre la  
selección de tests en la investigación psicológica  
Balboa Barreiro, V. (2018). Metodología de la Investigación  
[
Research Methodology]. Servicio Gallego de Saúde.  
https://doi.org/10.5281/zenodo.8050508  
48  
South American Research Journal, 3(1), 37-51  
https://www.sa-rj.net/  
[
Standards for the development and review of  
Efecto de la dieta cetogénica baja en calorías sobre la  
instrumental studies: Considerations for test selection in  
psychological research.]. International Journal of  
Clinical and Health Psychology, 7(3), 20.  
composición corporal en adultos con sobrepeso y  
obesidad: Revisión sistemática y metaanálisis [Effect of  
the low-calorie ketogenic diet on body composition in  
overweight and obese adults: systematic review and  
meta-analysis.]. Revista de Nutrición Clínica y  
Metabolismo, 4(3).  
Castañeda Paredes, J., & Santa-Cruz-Espinoza, H. (2021).  
Factores de riesgo asociados al embarazo en  
adolescentes [Risk factors associated with adolescent  
pregnancy]. Enfermería Global, 20(2), 109-128.  
https://doi.org/10.6018/eglobal.438711  
https://doi.org/10.35454/rncm.v4n3.273  
Doyle, L., Brady, A.-M., & Byrne, G. (2009). An overview of  
mixed methods research. Journal of Research in  
Nursing, 14(2), 175-185.  
Cataldo, R., Arancibia, M., & Stojanova, J. (2019). Conceptos  
generales en bioestadística y epidemiología clínica:  
Estudios observacionales con diseños transversal y  
ecológico [General concepts in biostatistics and clinical  
epidemiology: Observational studies with cross-  
sectional and ecological designs.]. Medwave, e7698-  
e7698.  
Ceron, A., Curini, L., & Iacus, S. M. (2016). Politics and Big  
Data: Nowcasting and Forecasting Elections with  
Social Media. Routledge.  
https://doi.org/10.1177/1744987108093962  
Duarte-Neto, A. N., Teixeira, T. A., Caldini, E. G., Kanamura, C.  
T., Gomes-Gouvêa, M. S., dos Santos, A. B. G.,  
Monteiro, R. A. A., Pinho, J. R. R., Mauad, T., da  
Silva, L. F. F., Saldiva, P. H. N., Dolhnikoff, M., Leite,  
K. R. M., & Hallak, J. (2022). Testicular pathology in  
fatal COVID-19: A descriptive autopsy study.  
Andrology, 10(1), 13-23.  
Charmaz, K. (2014). Constructing Grounded Theory. SAGE.  
Chiatchoua, C., Lozano, C., & Macías-Durán, J. (2020). Análisis  
de los efectos del COVID-19 en la economía mexicana  
https://doi.org/10.1111/andr.13073  
Ezzy, D. (2002). Qualitative Analysis: Practice and Innovation.  
Allen & Unwin.  
[
Analysis of the effects of COVID-19 on the Mexican  
Farrington, B. (1984). Ciencia y Filosofía en la Antigüedad  
[Science and Philosophy in Antiquity]. Ariel.  
Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007).  
G*Power 3: A flexible statistical power analysis  
program for the social, behavioral, and biomedical  
sciences. Behavior Research Methods, 39(2), 175-191.  
https://doi.org/10.3758/BF03193146  
Golaki, S. P., Kamali, F., Bagherzadeh, R., Hajinejad, F., &  
Vahedparast, H. (2022). The effect of Flipped  
Classroom through Near Peer Education (FC through  
NPE) on patient safety knowledge retention in nursing  
and midwifery students: A solomon four-group design.  
BMC Medical Education, 22(1), 112.  
https://doi.org/10.1186/s12909-022-03144-w  
Gómez, M. F., & Dorati, J. (2017). Diseños de investigación en  
Ciencias Sociales y Psicología [Research designs in  
social sciences and psychology].  
http://sedici.unlp.edu.ar/handle/10915/127169  
Hair, J., Back, W., Babby, B., & Anderson, R. (2010).  
Multivariate Data Analysis, 7th Edition (7th ed.).  
Pearson. https://www.pearson.com/us/higher-  
education/program/Hair-Multivariate-Data-Analysis-  
7th-Edition/PGM263675.html  
economy]. Revista del Centro de Investigación de la  
Universidad la Salle, 14(53), 265-290.  
https://doi.org/10.26457/recein.v14i53.2683  
Codina, L. (2018). Revisiones bibliográficas sistematizadas:  
Procedimientos generales y Framework para ciencias  
humanas y sociales. Universitat Pompeu Fabra.  
http://repositori.upf.edu/handle/10230/34497  
Cohen, L., Manion, L., & Morrison, K. (2017). Research  
Methods in Education. Routledge.  
Cosentino, A. C., & Castro Solano, A. (2017). The High Five:  
Associations of the Five Positive Factors with the Big  
Five and Well-being. Frontiers in Psychology, 8.  
https://www.frontiersin.org/articles/10.3389/fpsyg.2017  
.
01250  
Creswell, J. (2013). Research Design Qualitative, Quantitative,  
And Mixed Method Approaches (Third). Sage.  
http://archive.org/details/JohnW.CreswellResearchDesi  
gnQualitativeQuantitativeAndMixedMethodApproache  
sSAGEPublications2013  
Creswell, J. W., & Creswell, J. D. (2017). Research Design:  
Qualitative, Quantitative, and Mixed Methods  
Approaches. SAGE Publications.  
Datu, J. A. D., Bernardo, A. B. I., & Valdez, J. P. M. (2021). The  
Emotional Rewards of Valuing Happiness: A  
Harris, D. E., Holyfield, L., Jones, L., Ellis, R., & Neal, J.  
(2019). Research Methods. En D. E. Harris, L.  
Holyfield, L. Jones, R. Ellis, & J. Neal (Eds.),  
Spiritually and Developmentally Mature Leadership:  
Towards an Expanded Understanding of Leadership in  
the 21st Century (pp. 57-65). Springer International  
Publishing. https://doi.org/10.1007/978-3-030-11175-  
5_4  
Longitudinal Study Among Filipino Adolescents. Child  
Indicators Research, 14(5), 1769-1779.  
https://doi.org/10.1007/s12187-021-09820-5  
de Jong, M. A. J. G., Wagemakers, A., & Koelen, M. A. (2019).  
Study protocol: Evaluation of a community health  
promotion program in a socioeconomically deprived  
city district in the Netherlands using mixed methods  
and guided by action research. BMC Public Health,  
Hernández Sampieri, R., Fernández Collado, C., & Baptista  
Lucio, P. (2014). Metodologia de la Investigacion  
[Research Methodology]. McGraw-Hill.  
1
9(1), Article 1. https://doi.org/10.1186/s12889-019-  
6
389-x  
Jaan, Y., Bano, Z., Akhter, A., Bassen, S., Amad, I., Batool, S.,  
Mehraj, R., & Gul, A. (2022). Effectiveness of Self-  
Instructional Module on Knowledge and Practice of  
Staff Nurses regarding Parenteral Pediatric Drug  
Administration at Sher-i-Kashmir Institute of Medical  
Sciences Soura, Srinagar, Kashmir. Trends in Nursing  
Administration and Education (2348-2141), 11(2).  
http://medicaljournalshouse.com/index.php/ADR-  
Nursing-Education/article/view/845  
de Vries, H. J. C., de Laat, M., Jongen, V. W., Heijman, T.,  
Wind, C. M., Boyd, A., de Korne-Elenbaas, J., van  
Dam, A. P., Schim van der Loeff, M. F., Bruisten, S.,  
Hoornenborg, E., Knol, M., Mathôt, R. A. A., & Prins,  
J. M. (2022). Efficacy of ertapenem, gentamicin,  
fosfomycin, and ceftriaxone for the treatment of  
anogenital gonorrhoea (NABOGO): A randomised,  
non-inferiority trial. The Lancet Infectious Diseases,  
2
3
2(5), 706-717. https://doi.org/10.1016/S1473-  
099(21)00625-3  
Jeacle, I. (2021). Navigating netnography: A guide for the  
accounting researcher. Financial Accountability &  
Management, 37(1), 88-101.  
Díaz Muñoz, G. A., Castañeda-Gómez, A. M., Belalcázar  
Monsalve, M. P., Zambrano Salazar, J. P., Bautista  
Velandia, M. C., & Ballesteros Arbeláez, F. (2021).  
https://doi.org/10.1111/faam.12237  
https://doi.org/10.5281/zenodo.8050508  
49  
South American Research Journal, 3(1), 37-51  
https://www.sa-rj.net/  
Kakemam, E., Ghafari, M., Rouzbahani, M., Zahedi, H., & Roh,  
Y. S. (2022). The association of professionalism and  
systems thinking on patient safety competency: A  
structural equation model. Journal of Nursing  
Management, 30(3), 817-826.  
Patten, M. L. (2017). Understanding Research Methods: An  
Overview of the Essentials. Taylor & Francis.  
Pearl, J. (2012). The Causal Foundations of Structural Equation  
Modeling. En R. H. Hoyle (Ed.), Handbook of  
Structural Equation Modeling, Second Edition (pp. 68-  
91). Guilford Press. chrome-  
https://doi.org/10.1111/jonm.13536  
Kirshenblatt-Gimblett, B. (2006). What Is Research Design? The  
Context of Design. New York University,.  
extension://efaidnbmnnnibpcajpcglclefindmkaj/https://f  
tp.cs.ucla.edu/pub/stat_ser/r370.pdf  
https://library.sacredheart.edu/c.php?g=29803&p=1859  
Pereira, R., & de Andrade Dornelles, T. A. (2021). Posible  
asociación entre el apoyo a formas menos democráticas  
de gobierno y el miedo al delito: Investigación  
longitudinal en Brasil, periodos 1990-1998 y 2005-  
2014 [Possible association between support for less  
democratic forms of government and fear of crime:  
longitudinal research in Brazil, periods 1990-1998 and  
2005-2014.]. Estudios Avanzados, 34, 15-25.  
Petticrew, M., & Roberts, H. (2008). Systematic Reviews in the  
Social Sciences: A Practical Guide. John Wiley &  
Sons.  
Pimienta-Prieto, J., & De la Orden, A. (2017). Metodología de la  
investigación [Research methodology]. Pearson.  
Popov, V. V., Muller-Kamskii, G., Katz-Demyanetz, A.,  
Kovalevsky, A., Usov, S., Trofimcow, D., Dzhenzhera,  
G., & Koptyug, A. (2019). Additive manufacturing to  
veterinary practice: Recovery of bony defects after the  
osteosarcoma resection in canines. Biomedical  
Engineering Letters, 9(1), 97-108.  
0
2
Kuru Alici, N., & Ozturk Copur, E. (2022). Anxiety and fear of  
COVID‐19 among nursing students during the COVID‐  
1
9 pandemic: A descriptive correlation study.  
Perspectives in Psychiatric Care, 58(1), 141-148.  
https://doi.org/10.1111/ppc.12851  
Lankoski, P., Björk, S., & al, et. (2015). Game Research  
Methods: An Overview. Lulu.com.  
Loachamin, S. (2023). Síntomas de infecciones del tracto genital  
y función sexual en mujeres que acuden al Consultorio  
Obstétrico Integral de la Mujer de Quito, año 2022  
[
Symptoms of genital tract infections and sexual  
function in women attending the Consultorio Obstétrico  
Integral de la Mujer de Quito, year 2022.]. South  
American Research Journal, 3(1), 5-16.  
https://doi.org/10.5281/zenodo.7973859  
Luciano, C. (2020). Metodología de la investigación científica  
[
Methodology of scientific research] [Tesis de  
posgrado, Instituto Universitario de Ciencias de la  
Salud]. chrome-  
extension://efaidnbmnnnibpcajpcglclefindmkaj/https://r  
epositorio.barcelo.edu.ar/greenstone/collect/tesis/index/  
assoc/HASH015e/f5d8ef07/e44b267c.dir/TFI%20Lucia  
no%20Carolina.pdf  
https://doi.org/10.1007/s13534-018-00092-7  
Popper, K. R. (2008). La lógica de la investigación científica (V.  
S. de Zavala, Trad.). Tecnos.  
Popper, K. R., Rodgers, T. S., Dahrendorf, R., & Habermas, J.  
(2008). La lógica de las ciencias sociales (J. Muñoz,  
Trad.). Cologón.  
Mantilla Millán, J. A. E., Ramírez Duarte, K. P., & Bohórquez  
Farfán, L. (2022). Narrativas de las víctimas sobre la  
Operación Berlín [Victims' narratives of Operation  
Berlin]. Reflexión política, 24(49), 4.  
Marvasti, A. (2018). Research methods. En The Cambridge  
Handbook of Social Problems (Vol. 1, pp. 23-37).  
Cambridge University Press.  
https://doi.org/10.1017/9781108656184.003  
Oberti, A., & Bacci, C. (2018). Metodologíadelainvestigación.  
FAHCE.  
Ochoa-Azze, R., Chang-Monteagudo, A., Climent-Ruiz, Y.,  
Macías-Abraham, C., Valenzuela-Silva, C., de los  
Ángeles García-García, M., Jerez-Barceló, Y., Triana-  
Marrero, Y., Ruiz-Villegas, L., Dairon Rodríguez-  
Prieto, L., Guerra-Chaviano, P. P., Sánchez-Ramírez,  
B., Hernández-García, T., Orosa-Vázquez, I., Díaz-  
Hernández, M., Chiodo, F., Calcagno, A., Ghisetti, V.,  
Rodríguez-Acosta, M., … Verez-Bencomo, V. (2022).  
Safety and immunogenicity of the FINLAY-FR-1A  
vaccine in COVID-19 convalescent participants: An  
open-label phase 2a and double-blind, randomised,  
placebo-controlled, phase 2b, seamless, clinical trial.  
The Lancet Respiratory Medicine, 10(8), 785-795.  
https://doi.org/10.1016/S2213-2600(22)00100-X  
Oikarainen, A., Kaarlela, V., Heiskanen, M., Taam-Ukkonen, M.,  
Lehtimaja, I., Kärsämänoja, T., Tuomikoski, A.-M.,  
Kääriäinen, M., Tomietto, M., & Mikkonen, K. (2022).  
Educational intervention to support development of  
mentors’ competence in mentoring culturally and  
linguistically diverse nursing students: A quasi-  
experimental study. Nurse Education Today, 116,  
Quezada Lucio, N. (2021). Metodología de la investigación  
[Research methodology]. Marcombo  
Rajbhandari, S., Devkota, N., Khanal, G., Mahato, S., & Paudel,  
U. R. (2022). Assessing the industrial readiness for  
adoption of industry 4.0 in Nepal: A structural equation  
model analysis. Heliyon, 8(2), e08919.  
https://doi.org/10.1016/j.heliyon.2022.e08919  
Raynaud, D. (2022). Sociology: Before the Origin. En The  
Future of Sociology. Routledge.  
Rimoldi, L. (2019). Estudio longitudinal de la representación  
social del teatro en una cohorte de 25 dramaturgos  
argentinos de entre 35 y 45 años. Moderna språk,  
113(1), 242-262.  
Rose, J., & Johnson, C. W. (2020). Contextualizing reliability  
and validity in qualitative research: Toward more  
rigorous and trustworthy qualitative social science in  
leisure research. Journal of Leisure Research, 51(4),  
432-451.  
https://doi.org/10.1080/00222216.2020.1722042  
Sampietro Saquicela, J. L., & Pico-Valencia, P. (2018). Revisión  
bibliográfica de sistemas de control para gestión de  
micro-redes de energía [Bibliographic review of control  
systems for micro-grid energy management.]. Maskay,  
8(2), 60-66. https://doi.org/10.24133/maskay.v8i2.971  
Soto-Álvarez, C., Fonseca, G. M., Viciano, J., Alemán, I., Rojas-  
Torres, J., Zúñiga, M. H., & López-Lázaro, S. (2020).  
Reliability, reproducibility and validity of the  
conventional buccolingual and mesiodistal  
measurements on 3D dental digital models obtained  
from intra-oral 3D scanner. Archives of Oral Biology,  
109, 104575.  
1
05424. https://doi.org/10.1016/j.nedt.2022.105424  
Páramo Reales, D., Campo Sierra, S., & Maestre Matos, L. M.  
2020). Métodos de investigación cualitativa.  
https://doi.org/10.1016/j.archoralbio.2019.104575  
Soto-Canales, K., & Padilla-Herrera, D. K. (2023). Ciudad-No  
ciudad: Imaginarios urbanos contrapuestos. Caso  
Monterrey, México [City-Non-city: Opposing urban  
imaginaries. The case of Monterrey, Mexico]. Legado  
(
Fundamentos y aplicaciones [Qualitative research  
methods. Fundamentals and applications]. Editorial  
Unimagdalena.  
https://doi.org/10.5281/zenodo.8050508  
50  
South American Research Journal, 3(1), 37-51  
https://www.sa-rj.net/  
de Arquitectura y Diseño, 18(33), 29-38.  
https://doi.org/10.36677/legado.v18i33.18264  
Stokes, P., & Wall, T. (2017). Research Methods. Bloomsbury  
Publishing.  
Supo, J. (2012). Seminarios de Investigacion Cientifica:  
Metodologia de La Investigacion Para Las Ciencias de  
La Salud [Scientific Research Seminars: Research  
Methodology for the Health Sciences]. Bioestadístico.  
https://www.bookdepository.com/Seminarios-de-  
Investigacion-Cientifica-Metodologia-de-La-  
Investigacion-Para-Las-Ciencias-de-La-Salud-Dr-Jose-  
Supo/9781477449042  
Tomaylla Quispe, Y. S., & Gutiérrez Aguilar, O. A. (2023).  
Síntomas culturales de la generación peruana de los 80  
en los cuadernos de la artista Nereida Apaza, a la luz  
del método de interpretación de objetos de Erwin  
Panofsky [Cultural symptoms of the Peruvian  
generation of the 80's in the notebooks of artist Nereida  
Apaza, in the light of Erwin Panofsky's method of  
object interpretation.]. Revista Inclusiones, 58-70.  
Toscano, F. (2018). Metodología de la Investigación. U.  
Externado de Colombia.  
Vásquez Ruiz, R. (2014). Los sucesos de 1932: ¿Complot  
comunista, motín indígena o protesta subalterna?ꢀ: una  
revisión historiográfica [Communist plot, indigenous  
mutiny or subaltern protest?ꢀ: a historiographic review].  
Revista Humanidades, 3.  
Villanueva Couhg, F. J. (2022). Metodología de la investigación  
[Research methodology]. Klik.  
Walliman, N. (2021). Research Methods: The Basics. Routledge.  
Wan, M. (2022). Research Methods. En M. Wan (Ed.), CSR  
Image Discursive Construction of Banks and the Effects  
on Capital Markets: Comparative Study of China and  
US (pp. 69-86). Springer Nature.  
https://doi.org/10.1007/978-981-19-6012-3_4  
Xu, Z., Wang, X., Wang, X., & Skare, M. (2021). A  
comprehensive bibliometric analysis of  
entrepreneurship and crisis literature published from  
1984 to 2020. Journal of Business Research, 135, 304-  
318. https://doi.org/10.1016/j.jbusres.2021.06.051  
Yin, D. R. K. (2017). Case Study Research and Applications:  
Design and Methods. SAGE.  
Zhunio-Falcones, S. E., & Cabrera-Tenecela, P. (2022). Análisis  
factorial exploratorio y confirmatorio de la Escala de  
Intervención Docente Orientada a Promover la  
Metacognición en el Aula (EIDOPMA) [Exploratory  
and confirmatory factor analysis of the Teaching  
Intervention Scale for Promoting Metacognition in the  
Classroom (EIDOPMA).]. South American Research  
Journal, 2(1), 33-41.  
https://doi.org/10.5281/zenodo.6808830  
Zúñiga, C., Aguado, D., & Cabrera-Tenecela, P. (2022).  
Examining work ethic across Latam populations:  
Differences between Ecuadorian and Chilean workers.  
Journal of Globalization, Competitiveness and  
Governability, 16(3).  
https://revistas.ues.edu.sv/index.php/humanidades/articl  
e/view/41  
https://doi.org/10.3232/GCG.2022.V16.N3.02  
https://doi.org/10.5281/zenodo.8050508  
51