South American Research Journal, 2(1), 27-35  
					https://www.sa-rj.net/index.php/sarj/article/view/12  
					ISSN 2806-5638  
					Studies,  
					41,  
					230-233.  
					Gayo-Avello, D. (2013). A Meta-Analysis of State-of-the-Art  
					Electoral Prediction from Twitter Data. Social  
					Science Computer Review, 31(6), 649-679.  
					https://doi.org/10.1177/0894439313493979  
					González Díaz, I. (2017). Big Data para CEOs y Directores  
					de Marketing: Como dominar Big Data Analytics en  
					5 semanas para directivos. Isaac González Diaz.  
					Hadi, K., Lasri, R. y Abderrahmani, A. (2019). Social Data  
					Analytics for Forecasting Electoral Outcomes. 8(8),  
					4.  
					https://doi.org/10.1016/j.electstud.2015.11.017  
					Caldarelli, G., Chessa, A., Pammolli, F., Pompa, G., Puliga,  
					M., Riccaboni, M. y Riotta, G. (2014). A Multi-  
					Level Geographical Study of Italian Political  
					Elections from Twitter Data. PLOS ONE, 9(5),  
					e95809.  
					https://doi.org/10.1371/journal.pone.0095809  
					Callejas Cuervo, M. y Vélez Guerrero, M. A. (2019).  
					Predicción electoral usando un modelo híbrido  
					basado en análisis sentimental y seguimiento a  
					encuestas: Elecciones presidenciales de Colombia.  
					Hasan, A., Moin, S., Karim, A. y Shamshirband, S. (2018).  
					Machine Learning-Based Sentiment Analysis for  
					Twitter Accounts. Mathematical and Computational  
					Revista 94-104.  
					Politécnica,  
					15(30),  
					https://doi.org/10.33571/rpolitec.v15n30a9  
					Applications,  
					23(1),  
					11.  
					Cameron, M., Barrett, P. y Stewardson, B. (2016). Can Social  
					Media Predict Election Results? Evidence From  
					New Zealand. Journal of Political Marketing, 15(4),  
					https://doi.org/10.3390/mca23010011  
					Hopkins, D. y King, G. (2010). A Method of Automated  
					Nonparametric Content Analysis for Social Science.  
					American Journal of Political Science, 54(1), 229-  
					4
					16-432.  
					https://doi.org/10.1080/15377857.2014.959690  
					Cárdenas, A., Ballesteros, C. y Jara, R. (2017). Social  
					networks and electoral campaigns in Latin America.  
					A comparative analysis of the cases of Spain,  
					Mexico and Chile: Redes sociales y campañas  
					electorales en Iberoamérica. Un análisis  
					comparativo de los casos de España, México y  
					Chile. Redes sociais e campanhas eleitorais na  
					América Latina. Uma análise comparativa dos  
					casos de Espanha, México e Chile., 41, 19-40.  
					https://doi.org/10.7764/cdi.41.1259  
					247.  
					https://doi.org/10.1111/j.1540-  
					5907.2009.00428.x  
					Huberty, M. (2015). Can we vote with our tweet? On the  
					perennial difficulty of election forecasting with  
					social media. International Journal of Forecasting,  
					31(3),  
					992-1007.  
					https://doi.org/10.1016/j.ijforecast.2014.08.005  
					Huberty, M. (2013). Multi-cycle forecasting of congressional  
					elections with social media. Proceedings of the 2nd  
					workshop on Politics, elections and data, 23-30.  
					https://doi.org/10.1145/2508436.2508439  
					Ceron, A., Curini, L. y Iacus, S. M. (2016a). iSA: A fast,  
					scalable and accurate algorithm for sentiment  
					analysis of social media content. Information  
					Ibrahim, M., Abdillah, O., Wicaksono, A. y Adriani, M.  
					(2015). Buzzer Detection and Sentiment Analysis  
					for Predicting Presidential Election Results in a  
					Twitter Nation. 2015 IEEE International  
					Conference on Data Mining Workshop (ICDMW),  
					1348-1353.  
					Sciences, 105-124.  
					367-368,  
					https://doi.org/10.1016/j.ins.2016.05.052  
					Ceron, A., Curini, L. y Iacus, S. M. (2016b). Politics and Big  
					Data: Nowcasting and Forecasting Elections with  
					https://doi.org/10.1109/ICDMW.2015.113  
					Social  
					Media.  
					Routledge.  
					Jäger, K. (2016). Not a New Gold Standard: Even Big Data  
					Cannot Predict the Future. Critical Review, 28(3-4),  
					335-355.  
					https://doi.org/10.1080/08913811.2016.1237704  
					Jungherr, A. (2016). Twitter use in election campaigns: A  
					systematic literature review. Journal of Information  
					https://doi.org/10.4324/9781315582733  
					DiGrazia, J., McKelvey, K., Bollen, J. y Rojas, F. (2013).  
					More Tweets, More Votes: Social Media as a  
					Quantitative Indicator of Political Behavior. PLOS  
					ONE,  
					8(11),  
					e79449.  
					https://doi.org/10.1371/journal.pone.0079449  
					Technology  
					&
					Politics,  
					13(1),  
					72-91.  
					Fasel, D. (2014). Big Data – Eine Einführung. HMD Praxis  
					https://doi.org/10.1080/19331681.2015.1132401  
					Jungherr, A., Rivero, G. y Gayo-Avello, D. (2020). Retooling  
					Politics: How Digital Media Are Shaping  
					Democracy. Cambridge University Press.  
					Kalampokis, E., Karamanou, A., Tambouris, E. y Tarabanis,  
					K. (2017). On Predicting Election Results using  
					Twitter and Linked Open Data: The Case of the UK  
					2010 Election. Journal of Universal Computer  
					Science. https://doi.org/10.3217/jucs-023-03-0280  
					Lerman, K., Gilder, A., Dredze, M. y Pereira, F. (2008).  
					Reading the Markets: Forecasting Public Opinion of  
					Political Candidates by News Analysis. Conference  
					on Computational Linguistics (Coling).  
					der  
					Wirtschaftsinformatik, 51(4), 386-400.  
					https://doi.org/10.1365/s40702-014-0054-8  
					Firmino, L. y Murta, F. (2019). Comunicação política no  
					Facebook e previsão eleitoral - Análise de big data  
					da eleição presidencial brasileira de 2018 no Brasil:  
					Big data analysis of the 2018 Brazilian presidential  
					election 47-63.  
					https://doi.org/10.34019/1981-  
					070.2019.v13.28589  
					Forsythe, R., Frank, M., Krishnamurthy, V. y Ross, T. W.  
					1995). Using Market Prices to Predict Election  
					Brazil.  
					Lumina,  
					13(3),  
					4
					(
					Results: The 1993 UBC Election Stock Market. The  
					Canadian Journal of Economics / Revue canadienne  
					Lewis-Beck, M. (2005a). Election Forecasting: Principles and  
					Practice. The British Journal of Politics and  
					d’Economique,  
					28(4a),  
					770-793.  
					https://doi.org/10.2307/135930  
					International  
					Relations,  
					7(2),  
					145-164.  
					FronzettiColladon, A. (2020). Forecasting election results by  
					studying brand importance in online news.  
					International Journal of Forecasting, 36(2), 414-  
					https://doi.org/10.1111/j.1467-856X.2005.00178.x  
					Lewis-Beck, M. y Rice, T. (1984). Forecasting presidential  
					elections: A comparison of naive models. Political  
					4
					27.  
					Behavior,  
					6(1),  
					9-21.  
					https://doi.org/10.1016/j.ijforecast.2019.05.013  
					Gayo-Avello, D. (2012). No, You Cannot Predict Elections  
					with Twitter. IEEE Internet Computing, 16(6), 91-  
					https://doi.org/10.1007/BF00988226  
					Livne, A., Simmons, M., Adar, E. y Adamic, L. (2011). The  
					Party Is Over Here: Structure and Content in the  
					2010 Election. Proceedings of the International  
					9
					4. https://doi.org/10.1109/MIC.2012.137  
					https://doi.org/10.5281/zenodo.5908534  
					34